Биохимия почек. Физиология и функции почек человека

Почки (рис. 26-1) выполняют 3 основные группы функций: мочеобразовательную, гомеостатическую и эндокринную.

Мочеобразовательная функция. Почки экскретируют из организма конечные продукты обмена, посторонние вещества и избыточные соединения. Оттекающие ежесуточно от почек 1,5 л вторичной мочи через мочеотводящие пути выводятся из организма (см. главу 27). Именно по отношению к мочеобразовательной функции (точнее, по отношению к вторичной, или дефинитивной моче) применяют термин «экскреция».

Конечные продукты обмена: мочевина, мочевая кислота, креатинин, продукты превращений билирубина, порфирины, аммиак, полиамины, гормоны и их метаболиты.

Поддержание гомеостаза (см. главу 28). Почки отвечают за поддержание постоянства состава и объёма жидкостей организма, электролитов и кислотно-щелочного равновесия (КЩР).

Эндокринная функция. Почки синтезируют гормоны, как поступающие в системный кровоток (эритропоэтин, кальцитриол), так и функционирующие локально вазоконстрикторы и вазодилататоры.

Фильтрация, реабсорбция, секреция и внутрипочечный метаболизм

Мочевыделительная и гомеостатическая функции почек - результат 4 сопряжённых и последовательных процессов: фильтрации, канальцевого транспорта (реабсорбция и секреция), а также внутрипочечного метаболизма. Эти базовые процессы развёртываются между кровеносными капиллярами почек и просветом почечных канальцев.

Клубочковая фильтрация (ультрафильтрация, рис. 26-2) происходит в почечных тельцах из просвета капилляров клубочка (первичная капиллярная сеть) в просвет эпителиальной капсулы и приводит к образованию первичной мочи (ультрафильтрат). Каждые сутки обе почки взрослого человека образуют около 180 л первичной мочи.

Рис. 26-1. Мочевыделительная система. Слева: почки, мочеточники, мочевой пузырь, мочеиспускательный канал (уретра). В составе правой почки: 1 - почечная лоханка; 2 - мозговое вещество почки; 3 - корковое вещество почки. Справа: в составе почечного тельца - капиллярный клубочек (кровь в клубочек вливается из приносящей артериолы, оттекает по выносящей артериоле), наружный листок эпителиальной капсулы Боумена-Шумлянского (внутренний листок эпителиальной капсулы представлен подоцитами (не изображены, см. рис. 26-4); кровь из просвета капилляров фильтруется в полость эпителиальной капсулы, фильтрат - первичная моча, см. рис. 26-2), канальцы нефрона и собирательные трубочки - почечные канальцы, по которым от почечного тельца оттекает первичная моча. В канальцах происходят реабсорбция (см. рис. 26-2 и 26-3) и секреция, в результате образуется окончательная (вторичная) моча, поступающая в почечную лоханку.

Канальцевая реабсорбция (рис. 26-2, 26-3) происходит из просвета почечных канальцев в интерстиций и далее в просвет кровеносных капилляров вторичной капиллярной сети (перитубулярные капилляры). Суточный объём реабсорбции около 179 л.

Рис. 26-2. Пути фильтрации, реабсорбции и секреции. А. Капиллярный клубочек почечного тельца (первичная капиллярная сеть) перфузируется артериальной кровью из приносящих артериол. После фильтрации кровь оттекает от почечного тельца по выносящей артериоле. В интерстиции (между канальцами) выносящая артериола образует вторичную капиллярную сеть (перитубулярные капилляры), питающую паренхиму органа. В перитубулярные капилляры из просвета канальцев происходит реабсорбция, а из просвета капилляров в просвет канальцев - секреция. В результате из ультрафильтрата (первичной мочи) образуется дефинитивная моча. Выделенный прямоугольником участок схематически представлен на Б

Канальцевая секреция. Эпителиальные клетки почечных канальцев выделяют в ультрафильтрат ряд химических соединений, поступающих из внеклеточного вещества и перитубулярных капилляров или образующихся в самих эпителиальных клетках канальцев.

Почечный кровоток

Ток крови. Через почечные артерии при каждом сокращении сердца почки получают не менее 20% от сердечного выброса, т.е. около 1200 мл крови в минуту (350 мл/мин на 100 г почечной паренхимы, т.е. почти в 7 раз больше, чем мозг - 50 мл/мин на 100 г ткани мозга).

Почечный ток плазмы крови (именно плазма крови после клубочковой фильтрации образует первичную мочу) составляет примерно 600- 700 мл/мин (при значении Ht - гематокрита - 0,4):

почечный ток плазмы крови = (1 - Нt(почечный кровоток) 600-700 мл/мин = 0,4x1000 мл/мин

Первичная капиллярная сеть. От междольковых артерий параллельно поверхности органа ответвляются короткие приносящие (внутридольковые) артериолы; они распадаются на капилляры, формирующие клубочек в составе почечного тельца - первичная капиллярная сеть (рис. 26-2А и 26-7А). Клубочки первичной капиллярной сети входят в состав почечных телец, в которых происходят фильтрация плазмы и образование клубочкового фильтрата (ультрафильтрата, первичной мочи). Выносящая артериола собирает кровь из капилляров клубочка.

ФОттекающая от почечных телец кровь - артериальная: в выносящей артериоле содержание кислорода лишь примерно на 7% ниже, чем в приносящей артериоле. -Ф- В просвете капилляров первичной капиллярной сети гидростатическое давление составляет примерно 70 мм рт.ст. (вне капилляров, т.е. в полости эпителиальной капсулы - 20 мм рт.ст.), онкотическое - около 30 мм рт.ст. -ФФильтрация в почечных тельцах (рис. 26-2) происходит из просвета капилляров первичной капиллярной сети в полость капсулы Боумена-Шумлянского, движущая сила -

эффективное фильтрационное давление: (гидростатическое давление) - (онкотическое давление) - (давление в полости эпителиальной капсулы) = = (70 мм рт.ст.) - (30 мм рт.ст.) - (20 мм рт.ст.) = 20 мм рт.ст.

Вторичная капиллярная сеть. В капилляры вторичной сети кровь поступает из первичной капиллярной сети через выносящие артериолы. Эти артериолы переходят в прямые артериальные сосуды, спускающиеся в мозговое вещество, образующие вторичную капиллярную сеть (перитубулярные капилляры) и направляющиеся в виде прямых венозных сосудов к корковому веществу. Эти сосуды (и артериальные, и венозные) проходят параллельно канальцам нефронов (канальцы петли Хенле) и собирательным трубочкам, отчего и получили название vasa rectae. Капилляры перитубулярной сети располагаются в непосредственной близости от канальцев нефронов; в эти капилляры реабсорбируются вещества из просвета канальцев (рис. 26-2). Из вторичной капиллярной сети также происходит питание ткани почки. Капилляры мозгового вещества переходят в прямые венулы, впадающие в дуговые вены.

-Φ- Значительное содержание кислорода в капиллярах вторичной капиллярной сети эффективно обеспечивает активную реабсорбцию (рис. 26-2, 26-3) из просвета канальцев в просвет кровеносных капилляров. Кислород необходим главным образом для обеспечения работы Na+,К+-АТФазы, вмонтированной в плазматическую мембрану эпителиальных клеток почечных канальцев. -ФРеабсорбцию поддерживает возросшее в результате фильтрации (по сравнению с капиллярами первичной капиллярной сети) онкотическое давление в капиллярах вторичной капиллярной сети. Итак, первичная капиллярная сеть, расположенная между артериолами, характеризуется высоким гидростатическим внутрикапиллярным давлением и теряет в результате фильтрации не менее 10% объёма крови и до 20% объёма плазмы. Вторичная капиллярная сеть имеет низкое гидростатическое внутрикапиллярное давление, способствующее эффективной реабсорбции из почечных канальцев (см. подробнее на рис. 26- 3Б). Таким образом, вся поступающая в почку артериальная кровь сначала перфузирует капилляры первичной капиллярной сети и лишь затем артериальная кровь поступает в капилляры вторичной капиллярной сети.

Паренхима почки

Паренхима каждой почки, подразделяемая на корковое и мозговое вещество, состоит из 0,8-1,2 млн функциональных структурных единиц - нефронов, а также из множества собирательных трубочек коркового и собирательных протоков мозгового вещества. Коллективно все трубочки почки (канальцы нефрона, собирательные трубочки и протоки) именуются почечными канальцами.

Нефрон - эпителиальная трубка, начинающаяся от почечного тельца и впадающая в собирательную трубку. Стенка нефрона построена из однослойного эпителия, клетки которого (в зависимости от выполняемой функции) различны в разных отделах нефрона. По длине нефрона различают: проксимальный каналец (извитой и прямой) - тонкий каналец петли Хенле - восходящая (толстая) часть петли Хенле (эту часть называют также прямым дистальным канальцем) - извитой дистальный каналец. Дистальный прямой каналец (толстая часть петли Хенле) возвращается к собственному почечному тельцу и контактирует с ним. Извитой дистальный каналец через связующий отдел впадает в собирательную трубочку, которая, в, свою очередь, поступает в собирательные протоки. Разные отделы нефрона закономерно расположены либо в корковом, либо в мозговом веществе.

Типы нефронов. Различают два основных типа нефронов - кортикальные (все отделы нефрона расположены в корковом веществе, 85% всех нефронов - кортикальные) и юкстамедуллярные (петля

Хенле этих нефронов глубоко проникает в мозговое вещество почки).

Отделы почечных канальцев. В нефроне различают несколько отделов: капсула почечного тельца, окружающая капиллярный клубочек; проксимальный извитой и проксимальный прямой канальцы, тонкий каналец (в составе нисходящей и восходящей частей петли Хенле); толстый отдел в составе восходящей части петли Хенле (дистальный прямой каналец), дистальный извитой канальцы, а также связующий отдел (соединяет дистальный отдел нефрона с собирательной трубочкой). Собирательные трубки, сливаясь, образуют собирательные протоки. Характерная особенность всех почечных канальцев состоит в том, что между соседними клетками всегда присутствует диффузионные барьеры в виде полосок плотных контактов, окружающих верхушечные части клеток. Количество таких полосок плотных контактов увеличивается по мере продвижения по почечным канальцам, соответственно увеличивается электрическое сопротивление пласта эпителия, но уменьшается его проницаемость.

Ф- Проксимальный каналец подразделяют на извитой и прямой отделы. Именно в проксимальном отделе нефрона происходит основной объём реабсорбции (рис. 26-3). В связи с этим обстоятельством клетки канальца имеют ряд особенностей, значительно увеличивающим площадь реабсорбции. Интенсивность реабсорбции постепенно уменьшается по мере продвижения первичной мочи по канальцу, соответственно уменьшается количество приспособлений, увеличивающих поверхность клеток, а также митохондрий, необходимых для обеспечения транспортных процессов. По этой причине с функциональной точки зрения (интенсивность реабсорбции) проксимальный каналец подразделяют на последовательные сегменты - S1, S2 и S3. Между соседними клетками встречаются щелевые контакты. Основная функция проксимального канальца - осмос воды, реабсорбция NaCl, NaHCO 3 , глюкозы, аминокислот, Ca 2 +, HPO 4 2- , SO 4 2- , HCO 3 - , а также секреция NH 4 + и некоторых органических катионов и анионов.

Ф- Тонкий каналец петли Хенле состоит из плоских эпителиальных клеток, что существенно уменьшает диффузионный путь для воды. Длина тонкого канальца невелика в кортикальных, но значительна в юкстамедуллярных нефронах. Эти последние (точнее, их петля Хенле), составляя всего 15% от общего количества нефронов, крайне важны для концентрирования или разведения мочи. Клетки петли Хенле перекачивают NaCl из просвета ка-


Рис. 26-3. Реабсорбция в проксимальном канальце. Сверху вниз просвет канальца, кубические клетки стенки канальца, интерстиций, перитубулярный капилляр. Стрелки указывают направление и пути перемещения ионов и молекул: А: сплошная - трансклеточный перенос; прерывистая - парацеллюлярный перенос; прерывистые стрелки - комбинированный вариант переноса (подробнее см. в разделе «Трансклеточная проницаемость» главы 4, в т.ч. рис. 4-6). 1. - микроворсинки на поверхности эпителиальной клетки и 2. глубокие впячивания в базальной части эпителиальных клеток, а также переплетающиеся между собой отростки боковых поверхностей соседних клеток значительно увеличивают поверхность реабсорбции; 3. Митохондрии в базальной и латеральной частях эпителиальных клеток необходимы для обеспечения энергопотребностей при реабсорбции; 4. плотные контакты между клетками канальца перекрывают неспецифические пути диффузии. В верхушечной части клеток в значительном числе находятся содержащие белок эндоцитозные пузырьки, а также лизосомы. Б. В верхней части (эпителиальная клетка) сплошными стрелками показаны пути трансклеточный, парацеллюлярный и комбинированный пути переноса, обратите внимание на направленную кверху (в просвет канальца) тонкую стрелку («утечка» ионов из межклеточного пространства в просвет канальца). В нижней половине рисунка представлены движущие силы транспорта через стенку перитубулярного кровеносного капилляра (параметры: P - гидростатическое давление, π - онкотическое давление; индексы: i - интерстиций, c - капилляр)

нальцев в интерстиций, который в результате становится гипертоничным, формируя в мозговом веществе осмотический градиент между корой и почечными сосочками, что имеет решающее значение для осмотической диффузии воды между почечными канальцами и интерстицием.

-Φ- Толстый отдел петли Хенле. Эпителиальные клетки имеют кубическую форму, мощные впячивания плазмолеммы по базальной и латеральной поверхности клеток, что существенно увеличивает поверхность обмена. Это обстоятельство в сочетании с встроенными в плазмолемму клеток характерными трансмембранными переносчиками (см. ниже) существенно важно для формирования гиперосмотической среды. Стенка канальца не проницаема для мочевины и воды.

Ф- Дистальный каналец начинается от плотного пятна (здесь происходит регистрация параметров канальцевой жидкости, подробнее см. ниже) и по своей структуре напоминает клетки толстого отдела петли Хенле.

Ф- Связующий отдел и собирательные трубочки. Их стенка состоит из главных и вставочных клеток. Клетки связующего отдела синтезируют и секретируют калликреин.

Главные клетки несут на свободной поверхности ресничку. Их основная функция - реабсорбция Na + и Cl - и секреция К + .

Вставочные клетки подразделяются на подтипы: A (α) и B (β). Эти клетки реабсорбируют К+. Кроме того, α-клетки секретируют H+, а β-клетки - HCO 3 - .

-Φ- Собирательные протоки. По мере увеличения калибра протоков эпителий становится высоким цилиндрическим, а количество вставочных клеток уменьшается. Собирательные протоки (как и собирательные трубочки) принимают участие в транспорте электролитов, а также под влиянием альдостерона и АДГ - в транспорте воды и мочевины.

Оценка экскреторной функции почек

Для клинической оценки экскреторной функции почек, складывающейся из клубочковой фильтрации, канальцевой реабсорбции и канальцевой секреции, применяют как методы визуализации, так и измерение почечного клиренса (от англ. «clearance» - очищение).

Клиренс

Клиренс вещества X (C X) - параметр, характеризующий выведение почками (экскрецию) из организма вещества X. Клиренс выражают в объёмных единицах за единицу времени (например, в мл/мин). Други-

ми словами, клиренс вещества X - скорость его экскреции, отнесённая к виртуальному объёму крови, полностью очищенной от вещества X.

Для разных веществ значение клиренса (C X) различно. Так, для глюкозы, в норме не экскретируемой, C X равно 0. В то же время для парааминогиппурата, полностью удаляемого из крови, значение C X составляет 700 мл/мин, т.е. равно току плазмы крови через почку.

Клиренс инулина. Некоторые вещества (например, инулин - полимер фруктозы, M r 5000), как и парааминогиппурат, свободно фильтруются, но не реабсорбируются и не секретируются в канальцах. Такие вещества являются хорошим маркёром важного параметра мочевыделительной функции почек - скорости клубочковой фильтрации.

Ф- Скорость клубочковой фильтрации (СКФ, англ. «Glomerular Filtration Rate - GFR») - объём плазмы крови, фильтруемой в единицу времени из крови в полость капсулы Боумена-Шум- лянского (Р х хСКФ).

Для оценки почечного клиренса и СКФ применяют инулин, креатинин, маннитол, 125 1-йоталамат, 57 Co- или 58 Co-цианкобаламин, 51 Cr-этилендиаминтетрауксусную кислоту. Все эти маркёры экзогенны и требуют (в отличие от креатинина) их введения в сосудистое русло обследуемого.

Экскреция

Экскреторную функцию почки по отношению к веществу X (U X xV - скорость экскреции вещества X с мочой) определяют 3 фактора: скорости клубочковой фильтрации (СКФ), канальцевых реабсорбции и секреции. Эти процессы в общем виде можно записать следующим образом: экскреция = фильтрация - реабсорбция + секреция

Экскретируемая фракция (англ. Fractional Excretion - FE) вещества X - полезный показатель оценки функционального состояния почек: отношение скорости экскреции вещества X (U X xV) к объёму клубочковой фильтрации (Рх хСКФ).

ФИЛЬТРАЦИЯ

Через фильтрационный барьер почечного тельца (рис. 26-4, см. также рис. 26-2) происходят фильтрация плазмы и образование первичной мочи (ультрафильтрата, или клубочкового фильтрата).

Фильтрационный барьер

Фильтрационный барьер (рис. 26-4Б,В) состоит из эндотелия капилляров, базальной мембраны и фильтрационных щелей между ножками подоцитов.


Рис. 26-4. Почечное тельце, фильтрационный барьер и околоклубочковый комплекс . А. Почечное тельце состоит из капиллярного клубочка (примерно 50 капиллярных петель) и эпителиальной капсулы. Область, где в тельце входит приносящая и выходит выносящая артериолы, называют сосудистым полюсом; область отхождения проксимального извитого канальца нефрона - мочевой полюс тельца. Эпителиальная капсула состоит из двух листков: наружного (париетального) и внутреннего (висцерального). Между листками имеется полость, куда из просвета кровеносных капилляров поступает клубочковый фильтрат. Полость капсулы открывается в проксимальный извитой каналец. Наружный листок капсулы, состоящий из однослойного плоского эпителия, ограничивает капсулярное пространство снаружи. Клетки внутреннего листка капсулы (подоциты) прикреплены к наружной поверхности капилляров клубочка и вместе с эндотелием и базальной мембраной, общей для капилляра и подоцитов, участвуют в процессе фильтрации. К сосудистому полюсу подходит дистальный извитой каналец того же самого нефрона, что начинается на мочевом полюсе почечного тельца. Видоизменённые клетки этого отдела нефрона (плотное пятно) вместе с видоизменёнными клетками приносящей артериолы (юкстагломерулярные клетки) образуют так называемый околоклубочковый комплекс. В состав почечного тельца, а также околоклубочкового комплекса также входят мезангиалъные клетки, расположенные между капиллярными петлями клубочка. Б. Подоциты - видоизменённые эпителиальные клетки внутреннего листка капсулы. Они образуют большие ножки, от которых отходят многочисленные нитевидные малые ножки. Эндотелиалъные клетки капилляров клубочка имеют многочисленные фенестры. Между внутренним листком капсулы и эндотелием капилляров формируется общая (трёхслойная) базальная мембрана.


Рис. 26-4. Продолжение. В. Фильтрационные щели. Малые ножки подоцитов прикрепляются к базальной мембране. Между ножками подоцитов имеются узкие (30-40 нм) фильтрационные щели. Фильтрация плазмы осуществляется через волокнистую основу базальной мембраны и фильтрационные щели. Г. Околоклубочковый комплекс образован тремя типами клеток, расположенных у корня клубочка. Первый тип - юкстагломерулярные (зернистые) клетки - видоизменённые и содержащие гранулы ренина ГМК средней оболочки приносящей артериолы. Второй тип - юкставаскулярные клетки (мезангиальные), расположенные между приносящей и выносящей артериолами. Третий тип - эпителиальные клетки дистального канальца в месте его контакта с корнем клубочка (клетки плотного пятна)

Эндотелиальные клетки капилляров максимально уплощены, за исключением области, содержащей ядро. Уплощённая часть клетки содержит не затянутые диафрагмой фенестры (овальные окна) полигональной формы диаметром 70 нм, суммарно занимающие примерно 30% всей поверхности эндотелия. В результате плазма крови непосредственно контактирует с базальной мембраной. Таким образом, эндотелиальная часть фильтра задерживает только клеточные элементы, но не плазму крови.

Базальная мембрана толщиной до 300 нм формируется за счёт синтетической активности подоцитов и мезангиальных клеток. Основу базальной мембраны образует мелкоячеистая сеть, образованная молекулами коллагена типа IV, ламинина и связывающих их сульфатированного гликопротеина энтактина. Отрицательно заряженные цепи гепарансульфата, присутствующие в составе протеогликанов базальной мембраны, препятствует прохождению сквозь неё анионов, в том числе и анионных белков плазмы. Вещества с M r до 1 кД проходят через базальную мембрану свободно, до 10 кД в ограниченном количестве, а более 50 кД - в ничтожных количествах.

Фильтрационные щели образованы лабиринтом щелевидных пространств между малыми ножками подоцитов. Фильтрационные щели имеют ширину около 25 нм и затянуты щелевыми диафрагмами (сеть с ячейками размерами от 4 до 14 нм). Щелевые диафрагмы содержат отрицательно заряженные гликопротеины, белок нефрин, а в участках соединения диафрагм с плазмолеммой ножек подоцитов присутствует белок плотных контактов. Ножки подоцитов (за счёт актиновых микрофиламентов) в широких пределах изменяют свою толщину, что неизбежно сказывается на ширине фильтрационных щелей.

Параметры фильтрации

Клубочковую фильтрацию характеризуют различные параметры (объём фильтрата, скорость клубочковой фильтрации - СКФ, эффективное фильтрационное давление, показатель фильтруемости, разности осмотического давления между просветом капилляра и полостью эпителиальной капсулы, характер фильтруемых ионов и молекул).

Объём первичной мочи (отфильтрованной плазмы крови) составляет 10% от объёма крови (20% от объёма плазмы), протекающей по капиллярам клубочка (для взрослого человека 10% от 1800 л крови/сут = 180 л ультрафильтрата/сут, или 125 мл/мин).

СКФ определяют из уравнения:

СКФ = K f xP UF ,

где K f - коэффициент фильтрации; а P UF - эффективное фильтрационное давление.

Коэффициент фильтрации (K f) зависит от гидравлической проводимости клубочковых капилляров и площади фильтрации. При СКФ 125 мл/мин и при P UF 10 мм рт.ст величина K f составляет примерно 12,5 мл/мин/мм рт.ст. (на 100 г массы почки - 4,2 мл/мин/мм рт.ст., что минимально в 200 раз больше, чем K f в любой другой ткани.

♦ Увеличение значения K f повышает СКФ.

♦ Уменьшение значения K f понижает СКФ.

Эффективное фильтрационное давление (P UF , силы Старлинга, или движущая сила фильтрации):

где P GC - гидростатическое давление в просвете клубочковых капилляров (в норме около 50 мм рт.ст. и не изменяется по длине капилляра); P BS - гидростатическое давление в полости капсулы Боумена-Шумлянского (в норме около 10 мм рт.ст.); p GC - онкотическое давление крови в просвете клубочковых капилляров (в начале каждого клубочкового капилляра в норме около 25 мм рт.ст., но постепенно увеличивается, достигая к концу капилляра 30 мм рт.ст.); p BS - онкотическое давление фильтрата в полости капсулы Боумена-Шумлянского (в норме величина этого давления пренебрежимо мала).

Показатель фильтруемости (UF X /P x) - отношение концентрации вещества X в ультрафильтрате (Uf x) к концентрации вещества X в плазме крови - зависит от молекулярной массы и эффективного молекулярного радиуса вещества X.

UF X /P X <1. Вещества с малой молекулярной массой (<5,5 кД) и небольшим эффективным молекулярным радиусом (вода, мочевина, глюкоза, инулин), как правило, имеют в фильтрате ту же концентрацию, что и в плазме крови.

UF X /P X <1. С увеличением молекулярной массы веществ их концентрация в фильтрате прогрессивно уменьшается (например, в ультрафильтрате обнаруживаются лишь следы сывороточного альбумина). Тем не менее, показатель фильтруемости для лизоцима, миоглобина, лактоглобулина и массы других белков с молекулярной массой до 30 кД достаточен для появления в фильтрате ощутимых их количеств.

Электрический заряд. Поскольку ячейки сети в базальной мембране и фильтрационные щели несут отрицательный заряд, это обстоятельство ограничивает фильтрацию анионов и способствует фильтрации катионов. Однако, при этом существенное значение имеют величины молекулярных массы и радиуса заряженных веществ.

Состав клубочкового фильтрата. В результате фильтрации состав первичной мочи оказывается близким к составу плазмы, но в ультрафильтрате нет клеточных элементов крови и относительно мало белка. В частности в первичной моче отсутствуют макромолекулы, эффективный радиус которых превышает 4 нм.

Регуляция почечного кровотока и фильтрации

Имеющие чрезвычайно важное значение для адекватного выполнения функций почек параметры почечного кровотока и фильтрации находятся под жёстким контролем. Известно несколько механизмов контроля кровотока и фильтрации: авторегуляция в виде канальцево-клубочковой обратной связи и эффекты (как сосудосуживающие, так и сосудорасширяющие) множества сосудистоактивных веществ.

Под авторегуляцией понимают не зависящее от нервных и гормональных влияний свойство кровеносной системы почек стабильно удерживать параметры почечного кровотока (следовательно, и СКФ) при значительных колебаниях системного АД (СКФ практически стабильна при систолическом АД 85-150 мм рт.ст.). Авторегуляцию обеспечивают 2 сопряжённых механизма: миогенный ответ ГМК приносящих артериол и канальцево-клубочковая обратная связь.

Миогенный ответ заключается в сокращении или расслаблении ГМК, циркулярно ориентированных по отношению к просвету приносящей артериолы, что приводит к вазоконстрикции или вазодилатации кровеносного сосуда соответственно. Повышение системного АД увеличивает просвет приносящих артериол. Это активирует (открывает) чувствительные к растяжению катионные каналы ГМК, происходит деполяризация плазмолеммы ГМК, поступление Ca 2 + в цитозоль и сокращение ГМК. Просвет сосудов уменьшается, увеличивая сопротивление приносящей артериолы. В результате уменьшается СКФ.

Канальцево-клубочковая обратная связь поддерживается структурами околоклубочкового комплекса.

❖ Околоклубочковый комплекс (рис. 26-4Г) расположен у сосудистого полюса почечного тельца и состоит из юкстагломерулярных клеток, ГМК приносящей артериолы и клеток плотного пятна, принадлежащих стенке дистального извитого канальца того же самого нефрона. Такое тесное соседство ГМК и юкстагломерулярных клеток приносящей артериолы с клетками плотного пятна дистального канальца создаёт хорошие предпосылки для осуществления механизма обратной связи, контролирующего перфузию капиллярного клубочка. В ответ на повышение системного АД возрастает фильтрационное давление и СКФ. При-

рост СКФ увеличивает содержание Na+, Cl - и воды в ультрафильтрате, которое регистрируют клетки плотного пятна и передают соответствующие сигналы к ГМК и юкстагломерулярным клеткам приносящей артериолы.

Клетки плотного пятна реагируют на изменение концентрации и в канальцевой жидкости. Na+/K+/Cl - -перенос- чик, расположенный в плазмолемме верхушечной поверхности клеток плотного пятна, при увеличении в просвете канальца и способствует повышению содержания этих ионов и в цитозоле эпителиальных клеток. В результате открытия катионных каналов плазмолеммы происходит поступление Ca 2 + в цитозоль. Прирост в цитозоле стимулирует секрецию из клеток плотного пятна паракринных и аутокринных агентов в виде аденозина, тромбоксана и некоторых других.

Гладкомышечные клетки стенки приносящей артериолы имеют рецепторы к аденозину, их взаимодействие с выделяющимся из клеток плотного пятна аденозином приводят к поступлению Ca 2+ в цитозоль, сокращению ГМК, вазоконстрикции, увеличению сопротивления приносящей артериолы и уменьшению СКФ.

Зернистые клетки стенки приносящей артериолы также получают сигналы от клеток плотного пятна. Основная функция этих клеток - синтез фермента ренина, поступающего в общий кровоток. Субстрат ренина - ангиотензиноген (см. рис 28-2), дальнейшие превращения которого приводят к появлению в крови ангиотензина II - мощного вазоконстриктора, имеющего и иные эффекты, в том числе и на механизм канальцево-клубочковой обратной связи.

Мезангиальные клетки имеют рецепторы ангиотензина II, атриопептина и вазопрессина. Вазопрессин и ангиотензин II стимулируют сокращение мезангиальных клеток. Так как в цитоплазме клеток в большом количестве присутствуют микрофиламенты, то клетки обладают сократительной активностью и способны уменьшать площадь наружной поверхности стенки капилляров, через которую происходит фильтрация, снижая таким образом её уровень.

Сосудистоактивные регуляторы. В регуляции почечного кровотока и СКФ принимает участие множество гормонов и нейромедиаторов: ангиотензин II, норадреналин, адреналин, дофамин, АДГ, атриопептин, эндотелины, Пг, лейкотриены и оксид азота.

ТРАНСПОРТ В ПОЧЕЧНЫХ КАНАЛЬЦАХ

Транспорт через эпителиальные трубочки в общем виде рассмотрен в разделе «Трансклеточная проницаемость» главы 4 и проиллюстрирован на рис. 4-6 и 26-3. В данном разделе описано канальцевое (трансэпителиальное) перемещение конкретных веществ, т.е. их реабсорбция (из просвета канальцев в интерстиций и далее в околоканальцевые кровеносные капилляры) и секреция (из просвета капилляров в интерстиций и далее в просвет канальцев).

Натрий

Из поступающих в организм при сбалансированной диете 120 ммоль Na+ лишь 15% удаляется через потовые железы и ЖКТ, а 85% экскретируется с мочой. Каждые сутки почки отфильтровывают 25 500 ммоля и реабсорбируют 25 400 ммоля Na + , что примерно эквивалентно полутора килограммам поваренной соли. Поскольку вода пассивно перемещается между компартментами вслед за Na+ (и сопутствующим Cl -), ясно, сколь большое значение имеют почки для поддержания объёма жидкостей организма и их осмоляльности.

Градиент реабсорбции (рис. 26-5А). Реабсорбция Na+ (также CI -) наибольшая в проксимальном извитом канальце, постепенно уменьшается в проксимо-дистальном направлении и наименьшая в собирательных протоках.

Пути и направление транспорта. Через стенку почечного канальца транспорт Na + и Cl - (как и транспорт других ионов и воды) происходит как трансклеточно (сквозь клетку), так и по околоклеточному (парацеллюлярному) пути (рис. 26-3 и 26-5Б,В).

Механизмы канальцевого переноса Na+ через верхушечную и базолатеральную плазмолемму различны в силу того обстоятельства, что существенно отличается внеклеточная (внутриканальцевая и интерстициальная) и внутриклеточная . При реабсорбции Na+ пассивно входит в цитозоль через верхушечную плазмолемму, так как внутриклеточная существенно ниже внутриканальцевой (15 мМ против 142-40 мМ в разных отделах канальцев, см. рис. 26-9А,Б). В то же время через базолатеральную клеточную мембрану Na+ активно выкачивается из клетки, так как внеклеточная, т.е. интерстиция существенно выше внутриклеточной (145 мМ против 15 мМ, см. рис. 26-5Б).

Регуляция канальцевого транспорта Na+ осуществляется по следующим направлениям: автоматическая коррекция реабсорбции в проксимальных и дистальных канальцах вследствие изменений почечного кровотока (следовательно, фильтрации) и влияние на реабсорбцию в дистальном и отчасти в проксимальном отделах нефрона, а также в петле Хенле и особенно в собирательных трубках

Рис. 26-5. Реабсорбция натрия . А. Реабсорбция Na+ в разных отделах почечных канальцев. Стрелки в просвете канальцев - направление движения фильтрата. Концентрация Na+ в просвете проксимального извитого канальца, петли Хенле, дистального извитого канальца нефрона и в собирательных трубочках и протоках приведена в миллимолях (мМ, в прямых скобках). Количество реабсорбируемого Na+ в сутки (миллимоль/сут и % от отфильтрованного Na+) приведено внутри стрелок, направленных из просвета канальца. Указана также трансэпителиальная разность электрохимического потенциала (Δμ Νί1 , мВ).

Рис. 26-5. Продолжение. Б. Механизм транспорта Na+ в проксимальном извитом канальце (сегмент S1). Реабсорбция Na+ из просвета канальца в интерстиций показана стрелками, направленными слева направо (трансклеточный путь). Na+ входит в клетку по его концентрационному градиенту (приведены значения концентрация Na+ в миллимолях), но выходит из клетки в интерстиций против градиента концентрации. В нижней части рисунка показано обратное движение Na+ по парацеллюлярному пути, частично замкнутому плотными контактами (показаны в верхней части рисунка). В верхней части рисунка дана электрическая схема зарядов в разных частях канальца, из которой следует неизбежность движения катионов в просвет канальца по парацеллюлярному пути. В. Механизм реабсорбции Na+ в толстом отделе петли Хенле. Реабсорбция Na+ из просвета канальца в интерстиций показана стрелками, направленными слева направо (трансклеточный путь). Na + входит в клетку по его концентрационному градиенту, но выходит из клетки в интерстиций против градиента концентрации. В нижней части рисунка показана реабсорбция Na + по парацеллюлярному пути, частично замкнутому плотными контактами (показаны в верхней части рисунка). В верхней части рисунка дана электрическая схема трансэпителиальной стенки (сравни с рис. 26-5Б), из которой следует неизбежность движения катионов из просвета канальца по парацеллюлярному пути. Положительный заряд на канальцевой поверхности эпителия зависит от работы множества калиевых каналов, по которым из цитозоля в просвет канальца поступает K+

и протоках гуморальных и нервных факторов, увеличивающих или уменьшающих канальцевый транспорт Na+.

-Φ- Факторы, увеличивающие реабсорбцию Na+, т.е. приводящие к задержке Na+ и воды в организме: альдостерон, АДГ и влияния симпатического отдела нервной системы.

Ф- Факторы уменьшающие реабсорбцию Na+, т.е. приводящие к усилению диуреза и потенциально могущие привести к потере Na+ и обезвоживанию организма: атриопептин, Пг, брадикинин, дофамин и эндогенный ингибитор Na+,К+-АТФазы.

Хлор. Реабсорбция Cl - происходит как по трансклеточному, так и по околоклеточному пути. Объёмы реабсорбции Cl - в разных отделах почечных канальцев практически такие же, как и для Na+ (см. рис. 26-5Б). Cl - поступает в цитозоль против концентрационного градиента путём обмена внеклеточного Cl - на внутриклеточные анионы. Выход Cl - в интерстиций по всему протяжению почечных канальцев обеспечивают Cl - -каналы, а в проксимальном отделе нефрона дополнительно K+/Cl - -контранспортёр.

Вода. Реабсорбция воды по всему протяжению почечных канальцев происходит только пассивно. Из 170 л отфильтрованной воды в проксимальных канальцах реабсорбируется 67%, в петле Хенле - 15%, от 10 до 15% - в собирательных трубках и протоках, не происходит реабсорбции воды в дистальном канальце нефрона. Реабсорбцию воды обеспечивают мембранные водные поры - аквапорины разных типов. Различные ЛС (диуретики), подавляя реабсорбцию Na+, увеличивают экскрецию и Na+, и воды, тем самым уменьшая в организме объём внеклеточной жидкости.

Калий. Почки ежесуточно отфильтровывают 800 мМ К+, хотя с пищей поступает около 100 мМ, а экскретируется с мочой примерно 90 мМ. Происходит также секреция К+. Таким образом, поддержание калиевого баланса организма происходит при сочетании фильтрации, реабсорбции и секреции. В проксимальном отделе нефрона происходит массовая реабсорбция К+ (80%), а в дистальных - в зависимости от поступления калия в организм - этот катион либо реабсорбируется, либо экскретируется. Увеличивают секрецию калия диуретики, низкая в просвете канальцев, альдостерон.

Мочевина. Мочевина - конечный продукт катаболизма аминокислот - образуется в печени из NH 4 +, её концентрация в крови (азот мочевины) - 2,5-8,32 ммоль/л. Все 100% мочевины фильтруется в почках, экскретируется с мочой около 40% отфильтрованной мочевины (ежесуточно 20-35 г). В почках мочевина и реабсорбируется (проксимальный отдел нефрона и собирательные протоки), и секретируется (тонкая часть петли Хенле), в итоге почку покидает венозная кровь, содержащая 5% от поступившей в почки мочевины (рис. 26-6).


Рис. 26-6. Транспорт мочевины между канальцами, интерстицием и кровеносными сосудами . Значения в овалах - содержание (в %) от отфильтрованного (100%)

Глюкоза. Концентрация глюкозы в плазме крови натощак - 4-5,5 мМ (3,58-6,05 ммоль/л, 85-115 мг%). В почках глюкоза отфильтровывается полностью и практически полностью и активно (против концентрационного градиента) реабсорбируется в начальных отделах проксимального отдела нефронов. Секреции глюкозы нет, поэтому с мочой экскретируются следовые количества этого сахара. Глюкоза поступает в эпителий канальцев посредством активного сочетанного транспорта с Na+ (электрогенные контранспортёры SGLT), а покидает клетки облегчённой диффузией через Na+-независимые транспортёры GLUT.

Аминокислоты. Концентрация L-аминокислот в крови около 2,4 мМ. Это преимущественно всосавшиеся в ЖКТ аминокислоты. В почках отфильтровываются все аминокислоты, 98% - всасывается в проксимальных извитых канальцах по трансклеточному пути при помощи различныхNa+-зависимых котранспортёров и Na+-независимой облег-

чённой диффузии, выход аминокислот в межклеточное пространство происходит по механизму облегчённой диффузии.

Олигопептиды и белки

Фильтрация. Считают, что макромолекулы с мол. массой выше 40 000 не отфильтровываются. Однако, этот ориентировочный порог не абсолютен. Например, концентрация альбуминов в фильтрате очень низка (от 4 до 20 мг/л, т.е. от 0,01% до 0,05% от концентрации альбумина в плазме крови); тем не менее, при СКФ 180 л/сут, количество отфильтрованного альбумина составляет 0,7-3,6 г/сут. В то же время экскреция альбумина с мочой - около 30 мг/сут. Таким образом, реабсорбируется до 99% отфильтрованного альбумина.

Реабсорбция. Перенос олигопептидов через щёточную каёмку осуществляют Н+-зависимые котранспортёры, тогда как белки поступают в клетки путём опосредованного рецепторами эндоцитоза. Эндоцитозные пузырьки сливаются с лизосомами, где происходит гидролиз белков до аминокислот и олигопептидов. Олигопептиды расщепляются пептидазами до аминокислот как в щёточной каём- ке, так и в цитоплазме эпителиальных клеток. Аминокислоты поступают в интерстиций по механизму облегчённой диффузии. Карбоновые кислоты. Монокарбоксилаты (лактат, пируват, ацетоа-

цетат, β-гидроксибутират), соли ди- и трикарбоновых кислот (α-кетоглутарат, малат, сукцинат и цитрат) реабсорбируются трансклеточно практически полностью в проксимальных извитых канальцах. Экскреция карбоновых кислот - кетоновых тел (ацетоацетат и β-гидроксибутират - происходит при голодании и сахарном диабете.

Органические анионы. Различные органические анионы (метаболиты эндогенно катаболизируемых соединений и экзогенно поступивших ЛС, а также парааминогиппуровая кислота) как фильтруются, так и секретируются. Секреция этих анионов (в том числе оксалатов, солей жёлчных кислот, пенициллина) происходит в проксимальных и дистальных отделах нефрона при помощи анионообменников (в обмен на Cl - , ураты и OH - просвета канальцев).

Ураты - моновалентные анионы - конечный продукт катаболизма пуринов. Их концентрация в плазме крови - 3 -7 мг% (0,2-0,4 мМ). Почки отфильтровывают ураты, в проксимальном отделе нефронов реабсорбируют их (пассивная диффузия и активный транспорт), затем снова происходит их секреция и повторная реабсорбция. С мочой экскретируется примерно 10% отфильтрованных уратов.

Органические катионы (как множество эндогенных (в том числе нейромедиаторы и креатинин), так и экзогенных (например, морфин,

хинин, амилорид) секретируются на протяжении второй половины проксимального отдела нефрона. Их поглощение из интерстиция происходит при помощи облегчённой диффузии, а выход в просвет канальцев осуществляет протонно-катаонный обменник.

Фосфаты. Концентрация фосфатов в плазме крови - 4,2 мг%, 50% находится в ионизированной форме (HPO 4 2- - четыре пятых, H 2 PO 4 - - одна пятая), 40% - в электролитных комплексах, 10% связаны с белками. В почках фильтруются фосфаты в ионизированной и комплексной формах. Ежесуточно фильтруется примерно на порядок величины больше содержания фосфатов в межклеточной жидкости и почти столько же реабсорбируется в проксимальном отделе нефрона при помощи котранспортёра натрия и фосфатов. Гормон паращитовидной железы ингибирует активность этого транспортёра. Некоторое количество фосфатов секретируется в просвет канальцев.

Кальций. Концентрация элементного кальция в плазме крови - 2,2-2,7 мМ. Около 40% кальция связано с белками и в почках не фильтруется, 60% кальция фильтруется из крови, это кальций карбонатов, цитратов, фосфатов и сульфатов (15%) и ионизированный кальций (45%, 1,0-1,3 мМ). 99,5% отфильтрованного кальция реабсорбируется: 65% в проксимальном отделе (этот процесс происходит автоматически и гормонально не контролируется), 35% в толстом отделе петли Хенле и дистальных извитых канальцах (в этих канальцах происходит гормональный контроль реабсорбции Ca 2 +). Гормон паращитовидной железы и витамин D стимулируют реабсорбцию Ca 2 +, тогда как в плазме крови - подавляют реабсорбцию Ca 2 +.

Магний. Концентрация магния в плазме крови - 0,8-1,0 мМ (1,8- 2,2 мг%), 30% магния связано с белками. 70% магния фильтруется в почках: из них менее 10% находится в составе фосфатов, цитратов и оксалатов, 60% - ионизированный магний (Mg 2 +). Менее 5% отфильтрованного магния экскретируется с мочой, 95% реабсорбируется преимущественно по околоклеточным путям во всех отделах нефрона, но главным образом (70%) в толстом восходящем колене петли Хенле. Гормон паращитовидной железы усиливает реабсорбцию во всех канальцах нефрона.

КОНЦЕНТРИРОВАНИЕ И РАЗВЕДЕНИЕ МОЧИ

Почки могут выделять мочу в широком диапазоне осмоляльности: от разведённой (до 30 мОсм, 1/10 осмоляльности плазмы крови) и до концентрированной (до 1200 мОсм, в 4 раза более осмоляльности плазмы). Концентрирование и разведение мочи существенно зависит от баланса воды в организме, транспорта воды, натрия и мочевины в паренхиме почек и специфической организации прямых трубочек (пря-

мых сосудов и петли Хенле) в мозговой части почек в сочетании с избирательной проницаемостью разных отделов петли Хенле и дистальных почечных канальцев.

Баланс воды. В норме поступление воды в организм и потери воды организмом должны быть одинаковы. Поступление воды складывается из выпиваемой жидкости, содержащейся в пище воды и воды, образующейся в митохондриях при аэробном обмене. Потери воды происходят преимущественно через почки, и именно почки - главный регулятор водного обмена.

Постоянство экскреции электролитов. Почки регулируют количество экскретируемой воды в зависимости от экскретируемых электролитов, главным образом хлористого натрия. Константа и стандарт экскреции электролитов - 600 миллиосмоль в сутки. Нормально эти 600 мОсм выделяются с обычными 1500 мл мочи. Для выделения большего или меньшего количества воды почки должны продуцировать мочу иной осмоляльности, но при условии сохранения количества экскретируемых электролитов (600 мОсм). Например, для суточной секреции 600 мОсм в 1500 мл осмоляльность мочи (изоосмотическая моча) должна составлять 400 мОсм; для выделения избытка воды осмоляльность мочи (разведённая моча) может уменьшиться до 30 мОсм (тогда диурез составит 20 л); для сохранения воды почки могут увеличить осмоляльность мочи до 1200 мОсм (диурез - 0,5 л). Таким образом, почки могут развести мочу (по отношению к осмоляльности плазмы крови) примерно в 10 раз (300 и 30 мОсм), но концентрируют мочу только в 4 раза (300 и 1200 мОсм).

Осмоляльность фильтрата в почечных канальцах (рис. 26-7).

Ф- Концентрированная моча образуется при осмотическом перемещении воды из просвета канальцев через водопроницаемые сегменты канальцев в гиперосмотический интерстиций.

Ф- Разведённая моча образуется при транспорте электролитов из просвета канальцев через непроницаемые для воды сегменты.

Ф- Осмотичность фильтрата. В проксимальных отделах нефрона жидкость в просвете канальцев изоосмотична (300 мОсм), после прохождения по петле Хенле - гипоосмотична (120 мОсм), и (в зависимости от баланса воды в организме) в конце собирательных протоков либо гипоосмотична (60 мОсм, рис. 26-7Б), либо гиперосмотична (1200 мОсм, рис. 26-7А).

Гиперосмотичность интерстиция мозгового вещества. Из рис. 26-7 видно, что (как при образовании гипоосмотичной, так и гиперосмотичной мочи) осмоляльность интерстиция мозгового вещества почки всегда выше осмоляльности коркового вещества. Более того,

Рис. 26-7. Осмоляльность интерстициальной жидкости вокруг разных отделов почечных канальцев . А. При ограничении питья. Б. Обильное питьё

существует градиент увеличения осмотичности интерстиция в направлении от коркового к мозговому веществу.

Петля Хенле юкстамедуллярных нефронов играет ключевую роль в разведении и концентрировании мочи. Одна из функций петли Хенле состоит в перемещении NaCl из канальцев в интерстиций. В то же время толстый отдел петли не реабсорбирует воду. Тем самым этот сегмент нефрона прямо участвует в образовании разведённой мочи. В то же время возникающая гиперосмотичность интерстиция мозговой части почки косвенно способствует образованию концентрированной мочи (сравни А и Б на рис. 26-7). Такое перемещение NaCl в интерстиций при одновременной непроницаемости для воды толстого отдела петли Хенле в любой точке петли создаёт поперечный градиент осмоляльности между канальцем и интерстицием, равный 200 мОсм. Этого градиента явно мало для создания реально возникающей в месте перегиба петли осмоляльности от 500 мОсм (рис. 26-12Б) до 1200 мОсм (рис. 26-7А). Но эта задача решается повторением циклов создания поперечного градиента между просветом канальца и интерстицием (противоточный умножитель).

Противоточный умножитель петли Хенле. Умножение эффекта создания поперечного градиента осмоляльности возможно в ситуации противоположного движения жидкости в нисходящем и восходящем коленах петли Хенле. Так, осмоляльность в 1200 мОсм в просвете канальца в месте перегиба петли может быть достигнута при повторении цикла более 30 раз. Соответственно нарастает и вертикальный (от коркового к мозговому веществу) градиент осмоляльности (рис. 26-7А). Таким образом, чем длиннее петля Хенле, тем больше вертикальный градиент осмоляльности. Помимо транспорта NaCl в интерстиций из канальцев существенное значение для гиперосмотичности интерстиция имеют и особенности распределения мочевины в разных отделах почечных канальцев (см. рис. 26-6).

Роль прямых сосудов. Прямые сосуды мозгового вещества, расположенные параллельно канальцам петли Хенле и организованные, как и петля Хенле, по типу шпильки (нисходящий прямой сосуд спускается в мозговое вещество, а восходящий прямой сосуд поднимается после перегиба к корковому веществу), также важны для формирования вертикального градиента гиперосмоляльности мозгового вещества. На рис. 23-8 приведены модели противоточного обмена водой и NaCl между просветом сосудов и интерстицием: схема на рис. 26-8А отражает ситуацию только для одного сосуда, а на рис. 26-8Б - для реальной шпильки из нисходящего и восходящего сосудов. Значение прямых сосудов в концентрировании и разведении мочи, как и петли Хенле, состоит в поддержании возрастающе-

го от коры к почечным сосочкам вертикального градиента гиперосмоляльности интерстиция. Здесь имеют значение 2 момента: вопервых, наличие противоточного обмена (сравни с противоточным умножителем градиента в петле Хенле), во-вторых, относительно низкий кровоток в мозговом сравнительно с корковым веществом - не более 10% от объёма кровотока почки. Понятно, что чем ниже кровоток, тем меньше будет удалено электролитов из интерстиция и тем стабильнее будет гиперосмоляльный градиент в мозговом веществе.


Рис. 26-8. Модель противоточного обмена . А. Вертикальная прямая трубка. Б. Вертикальная шпилька (петля). Числовые значения - осмоляльное давление (мОсм), толстые стрелки - движение воды, тонкие стрелки - движение электролитов

Собирательные протоки мозгового вещества также важны для формирования гиперосмотичной или гипоосмотичной мочи (рис. 26-7), так как их проницаемость имеет регулируемый характер. Так, без стимулирующего влияния АДГ стенка протоков относительно непроницаема для воды, АДГ увеличивает проницаемость (т.е. реабсорбцию) стенки протоков для воды. И, наконец, АДГ увеличивает проницаемость (т.е. реабсорбцию) стенки протоков для мочевины. Комбинации этих эффектов результируют осмоляльность вторичной (дефинитивной) мочи.

ПОЧКИ И КИСЛОТНО-ЩЕЛОЧНОЕ РАВНОВЕСИЕ

Лёгкие и почки имеют первостепенное значение для поддержания кислотно-щелочного равновесия крови путём контроля за компонентами её буферных систем - CO 2 и HCO 3 - . Кислотно-щелочное равновесие рассмотрено в главе 28, контроль - в главе 25, в этом разделе разобрана роль почек в контроле плазмы крови и в экскреции нелетучих кислот.

Нелетучие кислоты. В организме образуются нелетучие кислоты: (например, серная, фосфорная и различные органические) в суммарном количестве (за вычетом нейтрализованных основаниями) около 70 ммоль/сут (1 ммоль/кг массы тела). В перерасчёте на угольную кислоту (H 2 CO 3) почка ежесуточно экскретирует около 70 ммоль of H+ в мочу и одновременно переносит в кровь 70 ммоль вновь образованного HCO 3 - . В крови HCO 3 - нейтрализует 70 ммоль нелетучих кислот.

Титрование отфильтрованного HCO 3 - . Ежесуточно обе почки отфильтровывают 4320 ммоль HCO 3 - . Этот огромный пул анионов практически не экскретируется и не реабсорбируется, а титруется секретируемым в просвет канальцев H+ до CO 2 и H 2 O (H+ + HCO 3 -

H 2 CO 3 , H 2 CO 3 -- H 2 O + CO 2). Однако, реакция протекает слишком медленно для быстрого и полного превращения HCO 3 в H 2 O и CO 2 . Поэтому в процесс нейтрализации включается карбоангидраза эпителия почечных канальцев (фермент расщепляет HCO 3 - на CO 2 and OH - , а секретируемый H+ нейтрализует OH - , в итоге образуются те же H 2 O и CO 2 .).

«Новый» НСO 3 . Поверхностная мембрана эпителия хорошо проницаема для CO 2 и воды, поэтому CO 2 и H 2 O диффундируют в клетку, где карбоангидраза катализирует обратную реакцию - образование H + и HCO 3 - из CO 2 и H 2 O. Клетка экспортирует H + в просвет канальцев, а HCO 3 - в кровь через интерстиций. Таким образом, взамен оттитрованного в просвете канальцев и на поверхности эпителия HCO 3 - появляется «новый» HCO 3 - , секретируемый в кровь.

Титрование отфильтрованного и секретированного аммиака. Секретируемый H+ также титрует NH 3 . Небольшая часть NH 3 отфильтровывается, значительная часть диффундирует через эпителиальные клетки и поступает в просвет при помощи Na-H-обменника. В проксимальных канальцах превращение глутамина в α-кетоглутарат приводит к появлению 2 ионов NH 4 + , образующих 2 NH 3 2 иона H + . при метаболизировании α-кетоглутарата образуется 2 иона OH - , которые карбоангидраза превращает в ион HCO 3 - . Этот «новый» HCO 3 - далее поступает в кровь.

Титрование других отфильтрованных анионов. Помимо аммиака и HCO 3 - секретированный H + титрует также отфильтрованные HPO 4 - , креатинин и ураты.

Таким образом, в просвете канальцев H + титрует HCO 3 - , HPO 4 2- , NH 3 и некоторые другие анионы. Из 4390 ммоля H + 4320 ммоля (98%) идёт на титрование HCO 3 - . В итоге образуется «новый» HCO 3 - , поступающий в кровь. Эти процессы происходят преимущественно в проксимальном отделе нефрона (80%).

Нефрологи выделяют одиннадцать функций почек в организме, в этой статье подробно рассмотрены восемь основных из них. Кроме того, вы узнаете о строении нефрона почки, факторах регуляции реабсорбции, основных процессах механизмах образования мочи, веществах, выводимых почками, и сможете почерпнуть другую полезную информацию касательно функционирования этого парного органа.

Строение почек человека

Нефрология - раздел внутренних болезней, изучающий этиологию, патогенез и клиническое течение болезней почек, разрабатывающий методы их диагностики, лечения и профилактики.

Перед тем как перейти к описанию функции, остановимся на строении почек. Это парный орган, каждый из них имеет в среднем длину 9-12 см, ширину 4-6 см, толщину 3-4 см. Вес обеих почек составляет: у мужчин - 250-340 г, у женщин - 230-310 г.

Говоря об анатомии почек, их строении и функциях, обязательно нужно упомянуть о том, что левая почка несколько длиннее правой. Верхний конец почки отстоит от позвоночника на 4-5 см, нижний - на 6-7 см. У женщин обе почки расположены ниже, чем у мужчин, на половину высоты позвонка.

На этих фото показано строение почки человека:

В тканях почек выделяют: I) корковый слой, в котором протекают аэробные процессы с затратой кислорода для выработки АТФ, и 2) мозговой слой, в котором протекают анаэробные процессы без участия кислорода для выработки АТФ. Почки составляют лишь 0,4% веса тела человека, но для выполнения своих 11 основных функций в организме человека потребляют 10% кислорода, поступающего в организм.

Итак, вы получили краткую информацию о строении почек человека, перейдем к функциям органа.

Каковы основные функции почек в организме

Говоря о том, какие функции выполняют почки в организме человека, выделяют следующие:

1. Выделительную: выведение из организма конечных продуктов метаболизма.

2. Детоксикационную: выведение из организма токсических и лекарственных соединений, чуждых организму человека.

3. Гормональную: эта одна из основных функций почек у человека заключается в

  • биосинтезе из витамина D3 гормона кальцитриола,
  • биосинтезе через систему ренин-ангиотензин II гормонов альдостерона и вазопрессина.

4. Восстановление объема крови после кровопотери - восстановление кровяного давления через ренин-ангиотензиновую систему (АД).

5. Стимуляция кроветворения за счет биосинтеза эритропоэтина , который активирует в костном мозге биосинтез эритроцитов крови.

6. Поддержание кислотно-основного равновесия в организме (изогидрии), величин BE, рС02 и pH крови.

7. Поддержание изоосмии (постоянного осмотического давления крови, равного 285 мОсм/л).

8. Поддержание водно-солевого баланса.

9. Анаболическую: в тканях почек идет биосинтез глюкозы (глюконеогенез), биосинтез фосфолипидов, также почки выполняют функции биосинтеза простагландинов PGA2 и PGE2, 1-я пусковая реакция биосинтеза креатина.

10. Противосвертывающую: в тканях почек синтезируется плазминоген, который затем превращается в плазмин, являющийся важнейшим компонентом противосвертывающей системы. Активатором плазминогена является урокиназа, биосинтез которой протекает в почках.

11. Катаболическую: в тканях почек содержатся ферменты, вызывающие распад гормонов: инсулина, глюкагона, соматотропина, пролактатина до конечных продуктов.

Главная функция почек – выделительная

Начать рассказ о том, какую функцию выполняют почки, стоит с основной – выделительной.

Основной структурно-функциональной единицей почки, обеспечивающей выделительную функцию, является нефрон. Нефрон состоит из нескольких последовательно соединенных отделов, располагающихся в корковом и мозговом веществе почки. В каждой почке содержится 12 млн нефронов.

Строение нефрона:

  • сосудистый клубочек Шумлянского;
  • капсула Боумена;
  • проксимальные канальцы (извитой и прямой);
  • петля Генля;
  • дистальные канальцы (прямой и извитой);
  • собирательная трубочка.

Общая длина почечных канальцев - 120 км. При выполнении главной функции почек механизм образования мочи складывается из трех основных процессов:

  • клубочковой фильтрации через капсулу Боумена из плазмы крови воды и низкомолекулярных компонентов, являющихся конечными продуктами метаболизма в организме, что приводит к образованию первичной мочи (180-200 л за сутки);
  • канальцевой реабсорбции (обратного всасывания в кровь воды (90%) и необходимых для организма веществ из первичной мочи);
  • канальцевой секреции из крови в мочу ионов, органических веществ для поддержания гомеостаза в организме (органические вещества могут быть как эндогенной, так и экзогенной природы).

Клубочковая фильтрация осуществляется под влиянием физико-химических и биологических факторов. Гломерулярный фильтр (капсула Боумена) состоит из трех слоев: эндотелия капилляров, базальной мембраны и эпителия висцерального листка капсулы, или подоцитов. К биологическим факторам фильтрации относятся активность подоцитов (микронасосы) и сокращение и расслабление мезангиальных клеток. Физикохимический фактор (основной) - капиллярное давление (КД), создаваемое за счет разности диаметров приносящих и выносящих капилляров сосудистого клубочка Шумлянского (приносящие капилляры имеют больший диаметр, чем выносящие). Поэтому гидростатическое давление в капиллярах клубочка примерно в 2 раза выше, чем в капиллярах других тканей нашего организма. Препятствующей фильтрации силой является онкотическое давление за счет белков крови.

Следующий этап механизма выделительной функции почек — реабсорбция в почечных канальцах (обратное всасывание в из первичной мочи) осуществляется по различным механизмам: в проксимальных почечных канальцах имеет место изотоническая реабсорбция, с затратой энергии в виде молекул АТФ, без участия гормонов. В дистальных почечных канальцах имеет место гормонально регулируемая реабсорбция, без затраты энергии (АТФ) (дифференцированая реабсорбция). Количественная характеристика реабсорбции в проксимальных канальцах: с затратой АТФ работают ионные насосы (Na+, К+-АТФаза), и из первичной мочи в кровь активно переносятся: ионы натрия - 80%, ионы калия - 93%, ионы кальция - 69%, бикарбонат-ионы - 80%, хлорид-ионы - 70%, глюкоза - 100% (если ее содержание в плазме крови не более 10 ммоль/л), аминокислоты - 100%, креатин - 100%, фосфат-ионы - 95%, мочевина - 50%, вода - 70% - переходит в кровь пассивно, так как в крови образуется гипертонический раствор в проксимальном канале. Реабсорбция как этап одной из основных функций почек в дистальных канальцах почек регулируется тремя факторами:

  • гормонами (альдостерон, вазопрессин, кальцитриол, кальцитонин, паратгормон);
  • простагландинами (PGA2 и PGE2).

Количественная характеристика реабсорбции в дистальных канальцах: вода - 20%; под влиянием вазопрессина (антидиуретического гормона) активируется биосинтез белка аквапорина, который, встраиваясь в мембраны клеток, контактирующих с мочой, способствует переходу воды из первичной мочи в плазму крови; ионы натрия - 20% - под влиянием альдостерона обратно всасываются в кровь; фосфат-ионы и ионы кальция - 30% - реабсорбируются под влиянием двух гормонов - паратгормона и кальцитриола; бикарбонат-ионы - полностью (еще 20%) возвращаются в плазму крови, т.е. если в почках нет патологического процесса, то в моче полностью отсутствуют бикарбонат-ионы. На реабсорбцию в дистальных канальцах почек оказывает влияние ЦНС: так, при эмоциональных стрессах может быть или анурия (прекращение мочеобразования), или полиурия (нарушение реабсорбции из первичной мочи).

Влияние простагландинов: под влиянием PGA2 и PGE2 снижается реабсорбция ионов натрия из первичной мочи и усиливается выведение ионов натрия с мочой, что может привести к изменению осмотического давления.

Третий этап образования мочи - секреция. В окончательную мочу секретируются:

  • креатинин - содержится в крови и секретируется;
  • аммиак (NH3) - образуется в клетках канальцевого эпителия и в виде солей аммония NH| выводится с мочой;
  • протон (Н+) - секретируется из крови;
  • ионы (К+) - секретируются из крови.

Участие почек в обезвреживании ксенобиотиков (токсических и лекарственных веществ)

Вещества, поступающие в организм из окружающей среды и не включаемые в обмен веществ, называют чужеродными, или ксенобиотиками. Эти вещества могут попадать в организм с пищей, через кожу или с вдыхаемым воздухом. Ксенобиотики - чаще всего продукты хозяйственной деятельности человека или предметы бытовой химии - моющие средства, парфюмерия, средства борьбы с насекомыми. и продукты их после прекращения воздействия в организме должны быть инактивированы и удалены из организма. Растворимые (гидрофильные) ксенобиотики обезвреживаются вначале в клетках печени разнообразными микросомальными ферментами, превращаясь в гидрофильные, а затем идет их взаимодействие с глюкуроновой, серной кислотами или глицином с образованием нетоксичных парных соединений, которые почки удаляют из организма с мочой. Удаление ксенобиотиков и их обезвреженных метаболитов протекает как в проксимальных, так и в дистальных канальцах почек, и не только путем клубочковой фильтрации, но и путем секреции. Для ряда ксенобиотиков скорость и интенсивность канальцевой секреции значительно превышает скорость клубочковой фильтрации. Основная часть ксенобиотиков секретируется эпителием дистальных канальцев почек.

В чем заключается гормональная функция почек

Важнейшей составляющей частью мембран всех клеток организма человека является холестерин (циклический одноатомный спирт). В мембранах клеток холестерин находится в свободном состоянии и используется для биосинтеза следующих жизненно необходимых соединений:

  • гормонов-глюкортикоидов, минералокортикоидов, половых;
  • витамина D3;
  • желчных кислот.

Гормональная функция почек осуществляется следующим образом. Витамин D3 (холекальциферол) образуется в коже человека под влиянием ультрафиолетового (солнечного) облучения, далее в печени под влиянием фермента 25-гидроксилазы, а затем в почках под влиянием фермента 1-гидроксилазы синтезируется гормон кальцитриол. Биосинтез кальцитриола в почках стимулируют два фактора: 1) снижение концентрации в крови ионов кальция и 2) увеличение секреции паратгормона паращитовидными железами. Из почек кальцитриол транспортируется кровью в клетки слизистой кишечника, стимулируя в этих клетках биосинтез кальций-связывающего белка, что облегчает всасывание в кишечнике ионов кальция в кровь и поддержание гомеостаза ионов кальция в крови. На костную ткань кальцитриол действует аналогично паратгормону, активируя ферментную систему остеокластов, вызывая деминерализацию костной ткани, увеличение концентрации ионов кальция и фосфат-ионов в крови. Благодаря этой функции почек человека в клетках дистальных канальцев почек кальцитриол усиливает реабсорбцию ионов кальция и фосфат-ионов, ингибируя биосинтез паратгормона.

При снижении в кровеносных сосудах почек или во всей кровеносной системе организма в юкстагломерулярных клетках почек вырабатывается протеолитический фермент ренин, отщепляющий от сложного белка ангиотензиногена (синтезируемого клетками печени и содержащего в своем составе 400 остатков аминокислот), с его аминного конца, пептид, состоящий из 10 аминокислот и получивший название ангиотензин I. Далее ангиотензин I в почках и легких подвергается воздействию фермента карбо-ксидипептидилпептидазы. Клиницисты фермент карбо-ксидипептидилпептидазу называют ангиотензинпревращающим ферментом (АПФ). Этот фермент синтезируется в легких, под его воздействием с карбоксильного конца ангиотензина I (декапептида) отщепляются 2 аминокислоты и образуется ангиотензин II (октапептид), под влиянием которого в гипоталамусе активируется биосинтез гормона вазопрессина, а в корневом слое надпочечников - биосинтез гормона альдостерона. Гормональная функция почек заключается в том числе в биосинтезе гормона эритропоэтина.

Участие почек в восстановлении объема крови в организме

Ещё одна функция почек в организме — участие в восстановлении объема крови. Уменьшение общего объема жидкости в организме в результате кровопотери, при обильной рвоте, диарее, обильном потоотделении приводит к снижению артериального давления и высвобождению ренина, который из ангиотензиногена (α2-глобулин по природе), постоянно присутствующего в крови, образует ангиотензин I, далее превращающийся под влиянием АПФ в ангиотензин II. Ангиотензин II является мощным стимулятором секреции в коре надпочечников гормона альдостерона, который вызывает задержку ионов натрия. Повышение концентрации ионов натрия в крови является сигналом для осморецепторов гипоталамуса и секреции из нервных окончаний задней доли гипофиза в кровь гормона вазопрессина. Вазопрессин (антидиуретический гормон) усиливает биосинтез белков аквапоринов, что ведет к усилению реабсорбции воды из первичной мочи и задержке воды в организме. Объем крови восстанавливается. Одновременно с увеличением секреции альдостерона и вазопрессина ангиотензин II вы
зывает сужение сосудов кровеносной системы, повышение АД, усиливает чувство жажды (полидипсия).

Поступающая с питьем вода задерживается в организме. Повышение АД приводит к прекращению выделения ренина и выключению системы ренин-ангиотензин II.

Если в результате эндоартериита, или наследственных (генных) нарушений имеет место сужение просвета почечной артерии, что ведет к снижению в почке (локально) артериального давления и постоянной выработке ренина-ангиотензина II, то возникает почечная гипертония (почечная гипертензия).

Участие почек в кроветворении

Следующая функция почек, без какой было бы невозможно нормальное функционирование организма – участие в кроветворении.

Эритропоэз - процесс образования эритроцитов из полипотентных стволовых клеток костного мозга. Размножение и превращение начальной клетки эритроци-тарного ряда в унипотентную стимулирует ростовой фактор интерлейкин-3, синтезируемый Т-лимфоцитами крови. Дальнейшую пролиферацию и дифференцировку унипотентной клетки эритроцитарного ряда регулирует синтезирующийся в почках гормон эритропоэтин. Скорость биосинтеза эритропоэтина в почках зависит от парциального давления кислорода в окружающем воздухе и в крови. При гипоксии скорость образования эритропоэтина значительно повышается и, соответственно, в крови возрастает количество эритроцитов. приводит к снижению биосинтеза эритропоэтина в почках, что сопровождается развитием анемии у больного.

В крови и жидких средах организма человека в норме содержится эритропоэтин в небольшом количестве постоянно, так как эритроцит циркулирует в крови 120 дней, а затем разрушается макрофагами в печени, селезенке, костном мозге, поэтому эритропоэз идет также постоянно.

Роль почек в поддержании кислотного состояния в организме человека

Говоря о том, какие функции почки выполняют организме, нельзя забывать о роли этого органа в поддержании кислотного состояния.

Постоянство концентрации ионов водорода (Н+) во внутренней среде организма человека необходимо:

  • для поддержания трехмерной структуры биомолекул (особенно белков);
  • для действия ферментов в клетках;
  • для перехода в растворенное состояние неорганических соединений;
  • для стимуляции дыхательного центра в ЦНС.

Кровь человека характеризуется изогидрией: pH - 7,36-7,42; щелочными резервами (BE) - ±2,3 ммоль/л, парциальным давлением углекислого газа (Рсо) - 36-44 мм рт. ст. Это показатели кислотно-основного состояния (КОС), или кислотно-щелочного равновесия (КЩР), в норме. В результате метаболизма за сутки в кровь поступает большое количество кислых продуктов (конечные продукты распада белков, углеводов, липидов), но благодаря работе почек, легких и буферным системам крови изогидрия у здорового человека сохраняется.

Поддержание КОС почками осуществляется по трем механизмам:

  • если в крови, а затем в первичной моче фосфатная буферная система содержит 1 часть дигидрофосфата и 4 части гидрофосфата, то в результате реабсорбции в проксимальных и дистальных канальцах почек идет замена ионов натрия на протоны (Н+) с образованием дигидрофосфата. В окончательной моче дигидрофосфата 50 частей, гидрофосфата - 1 часть;
  • возврат бикарбоната натрия в плазму крови (т.е. у здорового человека в моче не содержатся бикарбонат-ионы);
  • образование иона аммония (NH|) за счет секреции NH3 и протонов (Н+), а затем выброс его с мочой в виде солей (в основном хлорида аммония).

Поддержание почками постоянства осмотического давления путем регуляции водно-солевого баланса в организме человека

Осмотическое давление играет важную роль в функционировании живых клеток и создается за счет присутствия электролитов в биологических жидкостях нашего организма. Количественно осмотическое давление, которое у человека равно 285 мОсм/л, определяют осмолярностью. В почках находятся нервные окончания - осморецепторы и волюморецепторы. При раздражении осморецепторов повышением осмотического давления возбуждение поступает в гипоталамус, что ведет к секреции вазопрессина, который через заднюю долю гипофиза выделяется в кровь и усиливает реабсорбцию воды из первичной мочи. Увеличение объема воды в плазме крови приводит к снижению и нормализации осмотического давления. Повышение объема воды в почке приводит к снижению осмотического давления и раздражению вол юморе цепторов, импульсы вновь поступают в гипоталамус, но результат противоположный: тормозится биосинтез вазопрессина, активируется биосинтез альдостерона в коре надпочечников; альдостерон усиливает в дистальных канальцах почек реабсорбцию ионов натрия и хлорид-ионов из первичной мочи, что ведет к нормализации осмотического давления.

В регуляции водно-солевого баланса в организме человека активно участвует система ренин-ангиотензин Н-альдостерон. Снижение перфузионного давления в почечных клубочках может наступить в результате стеноза почечной артерии, что ведет к выделению в юкстагломерулярных клетках почек фермента ренина, образованию ангиотензина I, затем под влиянием АПФ ангиотензина II, который активирует биосинтез альдостерона, вазопрессина и вызывает жажду (полидипсию), влияя на водно-солевой обмен в организме.

Значение анаболической функции почек

Значение анаболической функции почек очень высоко, ведь креатин играет важную роль в механизме мышечного сокращения (сердечной, скелетной, гладкой мускулатуры), так как его фосфорилированная форма - креатинфосфат - является транспортной формой переноса энергии, синтезированной в митохондриях, через мембрану митохондрий в мышцы. Первая стадия биосинтеза креатина протекает в почках (это ведущая стадия).

Среди ученых, изучающих молекулярные основы процессов жизнедеятельности в организме человека, существует твердое убеждение, что «почка - это маленькая печень». Это соответствует действительности: в корковом слое почки протекают процессы, аналогичные биосинтетическим процессам в гепатоцитах печени.

Так, клетки мозга, в отличие от клеток мышц, жировой ткани и других клеток, энергию получают только окислением глюкозы. Ежесуточно организм человека использует 160 г глюкозы для получения АТФ, из них 120 г расходуют клетки мозга. При голодании или недостаточном поступлении глюкозы с пищей лишь в клетках печени и в корковом слое почек активируется глюконеогенез до свободной глюкозы, которая поступает в кровь и поддерживает гомеостаз (3,3-5,5 ммоль/л): 80 г глюкозы в сутки могут синтезировать гепатоциты печени и 20 г - корковый слой почек.

Наряду с глюконеогенезом в почках, как и в гепатоцитах печени, происходит биосинтез сложных липидов - фосфолипидов, являющихся структурными компонентами мембран всех клеток организма человека.

Противосвертывающая функция почек в организме человека

Не менее важна и такая физиологическая функция почек, как противосвертывающая. Кровь - жидкая подвижная ткань, циркулирующая в закрытом сосудистом русле и осуществляющая связь организма с внешней средой, поддержание гомеостаза и объединение тканей и органов в единую систему.

Гемостаз - система механизмов, действие которых направлено, с одной стороны, на сохранение жидкого состояния крови, а с другой стороны - на остановку кровотечения в случае повреждения сосудов. Остановка кровотечения происходит благодаря факторам свертывания (15 факторов) и образованию тромба в месте повреждения кровеносного сосуда. Образовавшийся тромб существует 3-7 дней (время регенерации поврежденного сосуда), после чего подвергается растворению под влиянием факторов противосвертывающей системы крови. Процесс расщепления фибрина тромба с образованием растворимых пептидов называется фибринолизом и осуществляется ферментом плазмином. Плазмин образуется из белка плазминогена, синтезируемого почками. В почках синтезируется и фермент урокиназа, которая плазминоген путем частичного протеолиза превращает в активный фермент - плазмин. Растворимые пептиды удаляются кровью, тромб рассасывается.

Катаболическая функция почек

Гормоны-белки, гормоны-пептиды, гормоны - производные аминокислот воздействуют на клетки-мишени организма человека мембранно-внутриклеточным механизмом, т.е. они не проникают в цитозоль клетки, а взаимодействуют с рецепторами клетки на наружной поверхности цитоплазматической мембраны, активируя аденилатциклазу и способствуя образованию вторичного посредника - цАМФ или ц-ГМФ. Вторичные посредники в клетке-мишени запускают каскадный механизм активации ряда ферментов, изменяющих метаболизм данной клетки. После своего воздействия гормоны должны быть разрушены, так как накопление и увеличение их количества в организме приводит к эндокринным заболеваниям. В почках подвергаются гидролизу до пептидов, а затем до аминокислот следующие гормоны: инсулин, глюкагон, соматотропин, АКТГ, вазопрессин, ФСГ, ЛГ, МСГ, тиреотропин, паратгормон, кальцитонин. Образовавшиеся аминокислоты кровь приносит в гепатоциты печени; 2/3 аминокислот используется в биосинтезе белков, синтезируемых в гепатоцитах печени, а 1/3 аминокислот распадается до конечных продуктов, давая энергию (АТФ).

Здесь вы можете ещё раз посмотреть фото строения почки:


Функции почек: фильтрационно-реабсорбционная способность

Основной количественной характеристикой фильтрационной функции почек является скорость клубочковой фильтрации (СКФ). СКФ можно оценить посредством измерения экскретируемого с мочой вещества, которое только фильтруется из крови в почечных клубочках, но не реабсорбируется, не секретируется, не метаболизируется в почечных канальцах. Таким требованиям отвечают: инулин (полисахарид, состоящий только из D-фруктозы), маннитол (шестиатомный спирт, получаемый восстановлением маннозы), эндогенный креатинин, образующийся в организме человека из креатинфосфата. Объем крови, из которой эти вещества выводятся в течение 1 минуты, называется клиренсом (коэффициентом очищения) и равен скорости клубочковой фильтрации (СКФ). Поскольку для измерения клиренса инулин и маннитол необходимо вводить в кровь, это не может использоваться в обычной клинической практике. Клиренс определяет по эндогенному креатинину, который постоянно присутствует в крови в норме и выводится из организма, пройдя процесс клубочковой фильтрации.

Шведские нефрологи, рассматривая фильтрационно- реабсорбционную способность почек, рекомендуют определять клиренс, используя внутривенное введение рентгеноконтрастного препарата иогексола, который нетоксичен и полностью удовлетворяет требованиям идеального маркера клубочковой фильтрации. На уровень выведения его из организма не влияют пол, возраст и масса тела обследуемого пациента. Все вещества, выводимые почками, по величине клиренса делятся на три большие группы:

  • если клиренс равен нулю, то это вещество фильтруется, а затем полностью реабсорбируется (глюкоза, аминокислоты);
  • если клиренс меньше 100-125 мл/мин, то это вещество фильтруется, а затем частично реабсорбируется (мочевина, клиренс равен 75);
  • если клиренс больше 100-125 мл/мин, то это вещество фильтруется, но не реабсорбируется, а дополнительно секретируется эпителием клубочковых канальцев в мочу.

В моче здорового человека в норме отсутствуют белки, глюкоза, кетоновые тела, креатин, кровь, билирубин, осадки.

Теперь вы знаете, каковы основные функции почек в организме человека и имеете более ясное представление о строении этого органа.

Статья прочитана 2 845 раз(a).

Почка - парный орган, основной структурной единицей почек является нефрон. За 1 минуту в почках фильтруется 1000 - 1300 мл крови. Благодаря хорошему кровоснабжению, почки находятся в постоянном взаимодействии с другими тканями и органами и способны влиять на состояние внутренней среды всего организма.

ФУНКЦИИ ПОЧЕК:

1. ЭКСКРЕТОРНАЯ. Почками выводятся из организма:

а) конечные продукты катаболизма (например, такие продукты азотистого обмена, как мочевина, мочевая кислота, креатинин, а также продукты обезвреживания токсичных веществ).

б) избыток веществ, всосавшихся в кишечнике или образовавшихся в процессе катаболизма: вода, органические кислоты, витамины, гормоны и другие.

в) ксенобиотики - чужеродные вещества (лекарственные препараты, никотин).

2. ГОМЕОСТАТИЧЕСКАЯ. Почками регулируются:

а) водный гомеостаз

б) солевой гомеостаз

в) кислотно-основное состояние

3. МЕТАБОЛИЧЕСКАЯ.

а) участие в углеводном, белковом, жировом обменах

б) синтез в почках некоторых биологически активных веществ: ренина, активной формы витамина D 3 , эритропоэтина, простагландинов, кининов. Эти вещества оказывают влияние на процессы регуляции АД, свертывания крови, на фосфорно-кальциевый обмен, на созревание эритроцитов и на другие процессы.

ЭТАПЫ МОЧЕОБРАЗОВАНИЯ

Из компонентов плазмы крови почки образуют мочу и эффективно могут регулировать ее состав.

1. УЛЬТРАФИЛЬТРАЦИЯ

В процессе ультрафильтрации происходит образовние первичной мочи.

Кровь, двигаясь по сосудам почки, фильтруется в полости клубочка через поры соединительнотканной капсулы - особого фильтра, который состоит из 3-х слоев. 1-й слой - эндотелий кровеносных капилляров, который имеет поры большого размера. Через эти крупные поры проходят все компоненты крови, кроме форменных элементов и высокомолекулярных белков. 2-й слой - базальная мембрана, которая построена из коллагеновых нитей (фибрилл), образующих молекулярное “сито”. Диаметр пор - 4нм. Базальная мембрана не пропускает белки с молекулярной массой выше, чем 50кДа. 3-й слой - эпителиальные клетки капсулы, мембраны которых заряжены отрицательно, что не дает возможности отрицательно заряженным альбуминам плазмы крови проникать в первичную мочу. Форма трехслойных пор сложная и не соответствует форме белковых молекул плазмы крови. Это несоответствие предотвращает проникновение нормальных белковых молекул в первичную мочу. Если же структура, форма, заряд молекулы белка изменены по сравнению с нормальной белковой молекулой, то такой аномальный белок може пройти через фильтр и попасть в мочу. Это один из механизмов очистки плазмы крови от дефектных белков и восстановления ее нормального состава.


Таким образом, ультрафильтрат (первичная моча) в норме почти не содержит белков и пептидов (всего 3-4 г/л). Зато состав низкомолекулярных небелковых компонентов, содержание различных ионов в первичная моча такие же, как и в плазме крови. Поэтому первичную мочу иногда называют “безбелковым фильтратом плазмы крови”.

Количество образующегося ультрафильтрата зависит от величины движущей силы ультрафильтрации - гидростатического давления крови в сосудах клубочка (в норме оно составляет приблизительно 70 мм.рт.ст.).

Движущей силе ультрафильтрации противодействует онкотическое давление белков плазмы крови (около 25 мм.рт.ст.) и гидростатическое давление ультрафильтрата в полости капсулы (около 15 мм.рт.ст.).

Таким образом, движущая сила ультрафильтрации составляет:

70 - (25+15) = 30 (мм рт.ст.),

и называется эффективным фильтрационным давлением.

Энергия АТФ в процессе ультрафильтрации не затрачивается.

Понятно, что понижение артериального давления и/или увеличение гидростатического давления в полости капсулы может приводить к замедлению, а при значительных изменениях и к полному прекращению образования первичной мочи (анурия).

В результате процесса ультрафильтрации образуется первичная моча. В сутки через почки человека проходит приблизительно 1500л крови, при этом образуется около 180 литров первичной мочи (125мл за 1 минуту).

Фильтрационную способность почек оценивают путем вычисления фильтрационного клиренса (коэффициента очищения) - для этого в кровь вводят определенные вещества, которые только фильтруются, но не реабсорбируются и не секретируются (полисахарид инулин, маннитол, креатинин).

Фильтрационныйклиренс - это такой объем плазмы крови, который полностью очищается от нереабсорбируемого вещества за 1 минуту.

Инкреторная функция почки заключается в синтезе и выведении в кровоток физиологически активных веществ, которые действуют на другие органы и ткани или обладают преимущественно местным действием, регулируя почечный кровоток и метаболизм почки.

Ренин образуется в гранулярных клетках юкстагломерулярного аппарата. Ренин является протеолитическим ферментом, который приводит к расщеплению a2-глобулина - ангиотензиногена плазмы крови и превращению его в ангиотензин I. Под влиянием ангиотензинпревращающего фермента ангиотензин I превращается в активное сосудосуживающее вещество ангиотензин II. Ангиотензин II , суживая сосуды, повышает артериальное давление, стимулирует секрецию альдостерона, увеличивает реабсорбцию натрия, способствует формированию чувства жажды и питьевого поведения.

Ангиотензин II вместе с альдостероном и ренином составляет одну из важнейших регуляторных систем - ренин-ангиотензин-альдостероновую систему . Ренин-ангиотензин-альдостероновая система участвует в регуляции системного и почечного кровообращения, объема циркулирующей крови, водно-электролитного баланса организма.

Если давление в приносящей артериоле возрастает, то продукция ренина снижается и наоборот. Продукция ренина также регулируется плотным пятном. При большом количестве NaCI в дистальном отделе нефрона тормозится секреция ренина. Возбуждение b-адренорецепторов гранулярных клеток приводит к усилению секреции ренина, a-адренорецепторов - торможению.

Простагландины типа ПГИ-2 , арахидоновая кислота стимулируют продукцию ренина, ингибиторы синтеза простагланди-нов, например салицилаты, уменьшают продукцию ренина.
В почке образуются эритропоэтины, которые стимулируют образование эритроцитов в костном мозге.

Почки извлекают из плазмы крови прогормон витамин D3, образующийся в печени, и превращают его в физиологически активный гормон - витамин D3 . Этот стероидный гормон стимулирует образование кальцийсвязывающего белка в клетках кишечника, регулируя реабсорбцию кальция в почечных канальцах, и способствует его освобождению из костей.

Почки принимают участие в регуляции фибринолитической активности крови, синтезируя активатор плазминогена - урокиназу .

В мозговом веществе почки синтезируются Простагландины, которые участвуют в регуляции почечного и общего кровотока, увеличивают выделение натрия с мочой, уменьшают чувствительность клеток канальцев к АДГ.

В почке образуются кинины. Почечный кинин брадикинин является сильным вазодилататором, участвующим в регуляции почечного кровотока и выделения натрия.

Регуляция артериального давления

Регуляция артериального давления почкой осуществляется несколькими механизмами. Во-первых, как уже указывалось выше, в почке синтезируется ренин. Через ренин-ангиотензин-альдостероновую систему происходит регуляция сосудистого тонуса и объема циркулирующей крови.

В почках синтезируются вещества и депрессорного действия: депрессорный нейтральный липид мозгового вещества, Простагландины.

Почка участвует в поддержании водно-электролитного обмена, объема внутрисосудистой, вне- и внутриклеточной жидкости, что является важным для уровня артериального давления. Лекарственные вещества, повышающие выведение натрия и воды с мочой (диуретики), применяются в качестве гипотензивных средств.

Кроме того, почка экскретирует большинство гормонов и других физиологически активных веществ, которые являются гуморальными регуляторами артериального давления, поддерживая их необходимый уровень в крови.

Метаболическая функция почек

Метаболическая функция почек заключается в поддержании во внутренней среде организма постоянства определенного уровня и состава компонентов белкового, углеводного и липидного обмена.

Почки расщепляют фильтрующиеся в почечных клубочках низкомолекулярные белки, пептиды, гормоны до аминокислот и возвращают их в кровь.
Почка обладает способностью к глюконеогенезу. При длительном голодании половина поступающей в кровь глюкозы образуется почками.

Участие почки в обмене липидов заключается в том, что свободные жирные кислоты в ее клетках включаются в состав триацилглицеринов и фосфолипидов и в виде этих соединений поступают в кровь.

Нейрогуморальная регуляция деятельности почек
Нервная регуляция

Нервная система регулирует гемодинамику почки, работу юкстагломерулярного аппарата, а также фильтрацию, реабсорбцию и секрецию. Раздражение симпатических нервов, иннервирующих почку, которые являются преимущественно ветвями чревных нервов, приводит к сужению ее кровеносных сосудов. При сужении приносящих артериол уменьшаются фильтрационное давление и фильтрация.

Сужение выносящих артериол сопровождается повышением фильтрационного давления и ростом фильтрации. Стимуляция симпатических эфферентных волокон приводит к увеличению реабсорбции натрия, воды. Раздражение парасимпатических волокон, идущих в составе блуждающих нервов, вызывает усиление реабсорбции глюкозы и секреции органических кислот.

При болевых раздражениях диурез рефлекторно уменьшается вплоть до полного его прекращения (болевая анурия). Механизм этого явления заключается в сужении почечных сосудов в результате возбуждения симпатической нервной системы, усилении секреции катехоламинов надпочечниками и увеличении продукции антидиуретического гормона (вазопрессина).

Уменьшение и увеличение диуреза может быть вызвано условно-рефлекторным путем, что свидетельствует о выраженном влиянии высших отделов ЦНС на работу почек. ЦНС регулирует работу почек или непосредственно через вегетативные нервы, или через нейроны гипоталамуса, изменяя секрецию гормонов. В этом проявляется единство нервной и гуморальной регуляции.

Гуморальная регуляция

Ведущая роль в регуляции деятельности почек принадлежит гуморальной системе. На работу почек оказывают влияние многие гормоны, главными из которых являются антидиуретический гормон (АДГ), или вазопрессин, и альдостерон.

Антидиуретический гормон (АДГ) , или вазопрессин, способствует реабсорбции воды в дистальных отделах нефрона путем увеличения проницаемости для воды стенок дистальных извитых канальцев и собирательных трубочек. Механизм действия АДГ заключается в активации фермента аденилатциклазы. который участвует в образовании цАМФ из АТФ. цАМФ активирует цАМФ-зависимые протеинкиназы, которые участвуют в фосфорилировании мембранных белков, что приводит к повышению проницаемости для воды мембраны и увеличению ее поверхности. Кроме того, АДГ активирует фермент гиалуронидазу, которая деполимеризует гиалуроновую кислоту межклеточного вещества, что обеспечивает пассивный межклеточный транспорт воды по осмотическому градиенту.

При избытке АДГ может наступить полное прекращение мочеобразования. Уменьшение секреции АДГ вызывает развитие тяжелого заболевания несахарного диабета (несахарного мочеизнурения). При этом заболевании выделяется большое количество светлой мочи с незначительной относительной плотностью (до 25 л в сутки).

АДГ имеет важное значение, как уже отмечалось выше, в поддержании осмотического давления крови, волюморегуляции.

Альдостерон увеличивает реабсорбцию ионов натрия и секрецию ионов калия и водорода клетками почечных канальцев. Одновременно возрастает реабсорбция воды, которая всасывается пассивно по осмотическому градиенту, создаваемому ионами Na+, что приводит к уменьшению диуреза. Гормон уменьшает реабсорбцию кальция и магния в проксимальных отделах канальцев.

Натрийуретический гормон (атриальный пептид) усиливает выведение ионов натрия с мочой.

Паратгормон стимулирует реабсорбцию кальция и тормозит реабсорбцию фосфатов, что приводит к повышению концентрации ионов кальция в плазме крови и усилению выведения фосфатов с мочой. Кроме того, этот гормон угнетает реабсорбцию ионов натрия и НСО3- в проксимальных канальцах и активирует реабсорбцию магния в восходящем колене петли Генле.

Кальцитонин тормозит реабсорбцию кальция и фосфата.

Адреналин в малых дозах суживает просвет выносящих артериол, в результате чего повышается гидростатическое давление, увеличиваются фильтрация и диурез. В больших дозах он вызывает сужение как выносящих, так и приносящих артериол, что приводит к уменьшению диуреза вплоть до анурии.

Инсулин. Недостаток этого гормона приводит к гипергликемии, глюкозурии, увеличению осмотического давления мочи и увеличению диуреза.

Тироксин усиливает обменные процессы, в результате чего в моче возрастает количество осмотически активных веществ, в частности азотистых, что приводит к увеличению диуреза.

Простагландины угнетают реабсорбцию натрия, стимулируют кровоток в мозговом веществе почки, увеличивают диурез.

Соматотропин и андрогены увеличивают секрецию некоторых веществ, например парааминогиппуровой кислоты.

Ренин-ангиотензин-альдостероновая система участвует в регуляции почечного и системного кровообращения, объема циркулирующей крови, электролитного баланса организма.

  • Выделение. физиология почки
    • Механизмы мочеообразования
    • Другие функции почек

Выделение. физиология почки

Выделение - это процесс освобождения организма от продуктов обмена, которые не могут использоваться организмом, чужеродных и токсических веществ, избытка воды, солей, органических соединений.

К органам выделения относятся почки, легкие, потовые железы, желудочно-кишечный тракт. Легкие выделяют углекислый газ, пары воды, некоторые летучие вещества: пары эфира, алкоголя. Слюнные железы, железы желудка и кишечника способны выделять тяжелые металлы при попадании их в организм, лекарственные вещества, например, салицилаты, чужеродные органические соединения; роль этих желез возрастает при снижении функции почки.

Особое место среди органов выделения занимает почка.

Почка является истинным органом выделения - благодаря ее деятельности происходит экскреция конечных продуктов азотистого обмена и чужеродных веществ: мочевины, мочевой кислоты, креатинина, аммиака.

Почка осуществляет экскрецию лекарственных и избытка органических веществ, поступивших с пищей или образовавшихся в ходе метаболизма, например, глюкозы, аминокислот.

Почка является одновременно и органом регуляции - за счет механизмов мочеобразования регулируются объемы циркулирующей крови, внутри - и внеклеточной воды, постоянство осмотического давления и ионного состава плазмы и других жидкостей организма, осуществляется регуляция кислотно-щелочного равновесия (КЩР).

За счет продукции биологически активных веществ и гормонов, почка участвует в регуляции системного артериального давления, эритропоэза, гемокоагуляции.

Механизмы мочеообразования

Моча образуется в почках из крови, причем почка относится к наиболее интенсивно кровоснабжаемым органам - ежеминутно через почку проходит 1/4 всего объема крови, выбрасываемой сердцем. Основной структурно-функциональной единицей почки, обеспечивающей образование мочи, является нефрон . В почке человека и многих млекопитающих содержится около 1,2 миллионов нефронов. Однако, не все нефроны работают в почке одновременно, существует определенная периодичность функционирования отдельных нефронов, когда часть из них функционирует, а другие нет. Эта периодичность обеспечивает надежность деятельности почки за счет функционального дублирования. В связи с этим важным показателем функциональной активности почки является масса действующих нефронов в конкретный момент времени.

Схема строения нефрона. - междолевая артерия, 2 - междолевая вена, 3 - дугообразная венула, 5 - междольковая артериола, 6 - междольковая венула, 7 - приносящая артериаола, 8 - выносящая артериола, 9 - сосудистый клубочек, 10 - проксимальный извитой каналец, 11 - прямой нисходящий сосуд, 12 - прямой восходящий сосуд, 13 - петля Генле, 14 - дистальный извитой каналец, 15 - собирательная трубочка.

Нефрон состоит из нескольких последовательно соединенных отделов, располагающихся в корковом и мозговом веществе почки.

1) Сосудистый клубочек . Снаружи клубочки покрыты двухслойной капсулой Боумена-Шумлянского.

2) Главный или проксимальный отдел канальцев, начинающийся от полости капсулы извитой частью, которая затем переходит в прямую часть канальца. Клетки проксимального отдела на апикальной мембране имеют щеточную каемку из микроворсин, покрытых гликокаликсом. Проксимальный отдел расположен в корковом веществе, где переходит в петлю Генле.

3) Тонкий нисходящий отдел петли Генле , спускающийся в мозговое вещество почки, где поворачивает на 180° и переходит в восходящую часть, являющуюся началом дистального отдела канальцев.

4) Дистальный отдел канальцев, состоящий из восходящей части, петли Генле или прямого отдела и извитой части. Дистальные извитые канальцы через короткий связующий отдел впадают в коре почек в следующий отдел нефрона - собирательные трубки.

5) Собирательные трубки спускаются из коры почек вглубь мозгового вещества, сливаются в выводные протоки, открывающиеся в полость лоханки.

По особенностям локализации клубочков в коре почек, строения канальцев и особенностям кровоснабжения различают три типа нефронов: суперфициальные, интракортикальные и юкстамедуллярные .

Суперфициальные нефроны имеют поверхностно расположенные в коре клубочки, наиболее короткую петлю Генле, их 20-30%. Интракортикальные нефроны, клубочки которых расположены в средней части коры почки, наиболее многочисленны (60-70%) и выполняют основную роль в процессах ультрафильтрации мочи. Юкстамедуллярных нефронов значительно меньше (10-15%), клубочки их расположены у границы коркового и мозгового вещества почки, выносящие артериолы шире приносящих, петли Генле самые длинные и спускаются почти до вершины сосочка пирамид.

Механизм мочеобразования складывается из трех основных процессов:

1) клубочковой ультрафильтрации из плазмы крови воды и низкомолекулярных компонентов с образованием первичной мочи ;

2) канальцевой реабсорбции (обратного всасывания в кровь) воды и необходимых для организма веществ из первичной мочи;

3) канальцевой секреции ионов, органических веществ эндогенной и экзогенной природы.

Фильтрация - начальный и основной этап образования мочи. Фильтрация определяется, с одной стороны, величиной гидростатического давления, способствующего выходу жидкости из капилляра, а с другой стороны, величиной онкотического давления, создаваемого растворенными в плазме крупномолекулярными белками, которые препятствуют выходу жидкости из капилляров.

Эндотелиальные клетки капилляров клубочков приспособлены для процесса фильтрации - здесь имеются огромные поры диаметром до 40-100 нм, которые пропускают практически все крупные частицы крови, включая белки, за исключением форменных элементов крови - эритроцитов, лейкоцитов, тромбоцитов. Основным барьером для фильтрации является базальная мембрана, которая отделяет эндотелиальные клетки капилляров от подоцитов.

Дополнительным фильтром служат подоциты - эпителиальные клетки висцерального листка капсулы. Между ножками этих клеток имеются диафрагмы, пронизанные порами. Вероятно, диаметр этих пор тоже не превышает 8 нм, и поры содержат анионы. Все это вместе приводит к тому, что в норме при обычном кровотоке проницаемость белка резко ограничена. Крупные молекулы белка закупоривают поры и за счет наличия на белках анионных зарядов не подпускают к порам более мелкие молекулы белка.

Итак, в процессе фильтрации вместе со 120-110 мл воды фильтруются все низкомолекулярные вещества, которые свободно проходят через фильтрационную поверхность, за исключением большей части белков и форменных элементов крови. Поэтому ультрафильтрат напоминает по концентрации веществ плазму.

Канальцевая реабсорбция и ее регуляция. Все ценные, необходимые вещества реабсорбируются в почечных канальцах. Так, натрий реабсорбируется на 99%, калий - на 90%, кальций - на 99%, магний - на 94%, хлор - на 99%, бикарбонаты - на 99%, фосфаты - на 90%, сульфаты - на 69%, глюкоза (если ее содержание не превышает норму) - на 100%, аминокислоты - на 90%, вода - на 99%, мочевина - на 53%. В итоге, объем конечной мочи достигает 1,0-1,5 л в сутки. Основная масса молекул реабсорбируется в проксимальном извитом канальце, и меньше - в петле Генле, в дистальном извитом канальце и собирательных трубках. Реабсорбция веществ осуществляется с участием различных механизмов, главным из которых является активный транспорт.

Проксимальная реабсорбция обеспечивает полное всасывание ряда веществ первичной мочи - глюкозы, белка, аминокислот и витаминов. В проксимальных отделах всасывается 2/3 профильтровавшихся воды и натрия, большие количества калия, хлора, бикарбоната, фосфата, а также мочевая кислота и мочевина. К концу проксимального отдела в его просвете остается только 1/3 объема ультрафильтрата.

Всасывание воды происходит пассивно, по градиенту осмотического давления и зависит от реабсорбции натрия и хлорида. Реабсорбция натрия в проксимальном отделе осуществляется как активным, так и пассивным транспортом. В начальном участке канальцев это активный процесс.

Проксимальная реабсорбция глюкозы и аминокислот осуществляется с помощью специальных переносчиков.

Малые количества профильтровавшегося белка практически полностью реабсорбируются в проксимальных канальцах с помощью пиноцитоза.

Дистальная реабсорбция ионов и воды по объему значительно меньше проксимальной. Однако, существенно меняясь под влиянием регулирующих воздействий, она определяет состав конечной мочи и способность почки выделять либо концентрированную, либо разведенную мочу (в зависимости от водного баланса организма). В дистальном отделе нефрона происходит активная реабсорбция натрия, хлора, калия, кальция, фосфатов . В собирательных трубочках, главным образом юкстамедуллярных нефронов, под влиянием вазопрессина повышается проницаемость стенки для мочевины и она, благодаря высокой концентрации в просвете канальца, пассивно диффундирует в окружающее интерстициальное пространство. Под влиянием вазопрессина стенка дистальных извитых канальцев и собирательных трубочек становится проницаемой и для воды .

Способность почки образовывать концентрированную или разведенную мочу обеспечивается деятельностью противоточно-множительной канальцевой системы почки, которая представлена параллельно расположенными коленами петли Генле и собирательными трубочками. Моча двигается в этих канальцах в противоположных направлениях (почему систему и назвали противоточной), а процессы транспорта веществ в одном колене системы усиливаются ("умножаются") за счет деятельности другого колена. Определяющую роль в работе противоточного механизма играет восходящее колено петли Генле, стенка которого непроницаема для воды, но активно реабсорбирует в окружающее интерстициальное пространство ионы натрия. В результате, интерстициальная жидкость становится гиперосмотичной по отношению к содержимому нисходящего колена петли и по направлению к вершине петли осмотическое давление в окружающей ткани растет. Стенка же нисходящего колена проницаема для воды, которая пассивно уходит из просвета в гиперосмотичный интерстиций. Таким образом, в нисходящем колене моча из-за всасывания воды становится все более и более гиперосмотичной, т.е. устанавливается осмотическое равновесие с интерстициальной жидкостью. В восходящем колене, из-за всасывания натрия, моча становится все менее осмотичной и в корковый отдел дистального канальца восходит уже гипотоничная моча. Однако ее количество из-за всасывания воды и солей в петле Генле существенно уменьшилось.

Противоточно-множительная тубулярная система мозгового вещества почки.

Собирательная трубочка, в которую затем поступает моча, тоже образует с восходящим коленом петли Генле противоточную систему. Стенка собирательной трубочки становится проницаемой для воды только в присутствии вазопрессина . В этом случае, по мере продвижения мочи по собирательным трубочкам вглубь мозгового вещества, в котором нарастает осмотическое давление из-за всасывания натрия в восходящем колене петли Генле, все больше воды пассивно уходит в гиперосмотичный интерстиций и моча становится все более концентрированной.

Под влиянием вазопрессина происходит пассивный выход мочевины из собирательных трубочек в окружающее пространство. Мочевина интерстициальной жидкости по концентрационному градиенту диффундирует в просвет тонкой восходящей части петли Генле и вновь поступает с током мочи в дистальные канальцы и собирательные трубочки. Так осуществляется кругооборот мочевины в каналъцах, сохраняющих высокий уровень ее концентрации в мозговом веществе. Описанные процессы протекают в основном в юкстамедуллярных нефронах, имеющих наиболее длинные петли Генле, спускающиеся глубоко внутрь мозгового вещества почки.

В мозговом веществе почки имеется и другая - сосудистая противоточная система, образованная кровеносными капиллярами. Поскольку кровеносная сеть юкстамедуллярных нефронов образует длинные параллельные прямые нисходящие и восходящие капиллярные сосуды, спускающиеся вглубь мозгового вещества, двигающаяся по нисходящему прямому капиллярному сосуду кровь постепенно отдает воду в окружающее интерстициалъное пространство в силу нарастающего осмотического давления в ткани и, напротив, обогащается натрием и мочевиной, сгущается и замедляет свое движение. В восходящем капиллярном сосуде по мере движения крови в ткани с постепенно снижающимся осмотическим давлением происходят обратные процессы - натрий и мочевина по концентрационному градиенту диффундируют обратно в ткань, а вода всасывается в кровь. Таким образом, и эта противоточная система способствует поддержанию высокого осмотического давления в глубоких слоях ткани мозгового вещества, обеспечивая удаление воды и удержание натрия и мочевины в интерстиций.

Деятельность описанных противоточных систем во многом зависит от скорости движения находящихся в них жидкостей (мочи или крови). Чем скорее будет двигаться моча по трубкам противоточной системы канальцев, тем меньшие количества натрия, мочевины и воды успеют реабсорбироваться в интерстиций и большие количества менее концентрированной мочи будут выделяться почкой. Чем выше будет скорость кровотока по прямым капиллярным сосудам мозгового вещества почки, тем больше натрия и мочевины унесет кровь из почечного интерстиция, т.к они не успеют диффундировать из крови назад в ткань. Этот эффект называют "вымыванием " осмотически активных веществ из интерстиция, в результате его осмолярность падает, концентрированно мочи уменьшается и почкой выделяется больше мочи низкого удельного веса (разведение мочи). Чем медленнее происходит движение мочи или крови в мозговом веществе почек, тем больше осмотически активных веществ накапливается в интерстиций и выше способность почки концентрировать мочу.

Регуляция канальцевой реабсорбции осуществляется как нервным, так и, в большей мере, гуморальным путем.

Симпатические эффекты проявляются в виде активации процессов реабсорбции глюкозы, натрия, воды и фосфатов и реализуются через систему вторичных посредников

Основным фактором регуляции реабсорбции воды в дистальных отделах нефрона является гормон вазопрессин, называвшийся ранее антидиуретическим гормоном .

Канальцевая реабсорбция электролитов, также как и воды, регулируется преимущественно гормональными, а не нервными влияниями.

Канальцевая секреция и ее регуляция

Канальцевой секрецией называют активный транспорт в мочу веществ, содержащихся в крови или образуемых в самих клетках канальцевого эпителия, например аммиака. Секреция осуществляется, как правило, против концентрационного или электрохимического градиента с затратами энергии. Путем канальцевой секреции из крови выделяются как ионы K+ , Н+, органические кислоты и основания эндогенного происхождения, так и поступившие в организм чужеродные вещества, в том числе органического происхождения. Для ряда чужеродных организму веществ органической природы (антибиотиков, красителей и рентгеноконтрастных препаратов) скорость и интенсивность выделения из крови путем канальцевой секреции значительно превышает их выведение путем клубочковой фильтрации. Таким образом, канальцевая секреция является одним из механизмов обеспечения гомеостаза.

Механизмы образования мочи.

Способностью к секреции обладают клетки эпителия и проксимального, и дистальных отделов канальцев. При этом, клетки проксимальных канальцев секретируют органические соединения с помощью специальных переносчиков.

Состав и свойства конечной мочи. В сутки у человека образуется и выделяется от 0,7 до 2 л мочи. Эта величина носит название суточного диуреза и зависит от количества выпитой жидкости, т.к здоровым человеком выделяется 65-80% ее объема с мочой. Основное количество мочи образуется днем, тогда как ночью оно составляет не более половины дневного объема. Реакция суточной мочи обычно слегка кислая, однако рН колеблется в зависимости от характера питания. При растительной пище моча приобретает щелочную реакцию, а при белковой - становится более кислой. Белок и глюкоза в конечной моче практически отсутствуют, содержание аминокислот не превышает 0,5 г за сутки. В моче содержится широкий спектр органических кислот, небольшие концентрации витаминов (кроме жирорастворимых), биогенные амины и их метаболиты, стероидные гормоны и их метаболиты, ферменты и пигменты, определяющие цвет мочи. С мочой в разных концентрациях, зависящих от ее количества, выделяются практически все неорганические катионы и анионы, в том числе и широкий спектр микроэлементов.

Механизмы выведения мочи и мочеиспускания

Образовавшаяся в структурах нефрона моча поступает в почечные лоханки. По мере их заполнения и растяжения достигается порог раздражения механорецепторов, приводящий к рефлекторному сокращению мускулатуры лоханки и раскрытию мочеточника. За счет перистальтических сокращений их гладкой мускулатуры моча поступает в мочевой пузырь. Гладкие мышцы лоханки и мочеточников обладают значительной степенью автоматии, в связи с чем их перистальтика вызывается растяжением объемом поступающей мочи.

Заполняющая мочевой пузырь моча по мере накопления начинает растягивать его стенки, но при этом напряжение стенок пузыря не повышается до определенной величины растяжения, обычно соответствующей объему мочи в пузыре около 400 мл.

Появление напряжения стенки мочевого пузыря вызывает позывы к мочеиспусканию, так как раздражение механорецепторов ведет к поступлению афферентной информации в крестцовые отделы спинного мозга и формированию сложного рефлекторного акта. В этом акте участвуют не только спинальные, но и расположенные в головном мозге центральные структуры, позволяющие осуществлять произвольную задержку мочеиспускания или его начало.

Другие функции почек

Регуляция кислотно-щелочного равновесия. Почки участвуют наряду с легкими в регуляции КЩР (кислотно-щелочного равновесия). Прежде всего это осуществляется за счет регуляции процесса реабсорбции бикарбоната натрия, составной части бикарбонатного буфера.

Итак, почка способна секретировать избыток ионов водорода. Эта секреция сопряжена с реабсорбцией натрия (вместе с бикарбонатом), а также с детоксикацией аммиака.

Регуляция водно-солевого обмена, как и большинство физиологических регуляций, включает афферентное, центральное и эфферентное звенья. Афферентное звено представлено массой рецепторных аппаратов сосудистого русла, тканей и органов, воспринимающих сдвиги осмотического давления, объема жидкостей и их ионного состава. В результате, в центральной нервной системе создается интегрированная картина состояния водно-солевого баланса в организме. Следствием центрального анализа является изменение питьевого и пищевого поведения, перестройка работы желудочно-кишечного тракта и системы выделения (прежде всего функции почек), реализуемая через эфферентные звенья регуляции. Последние представлены нервными и, в большей мере, гормональными влияниями.

Метаболическая функция почек. Метаболическая функция почек состоит в обеспечении гомеостазиса обменных процессов в организме, поддержании во внутренней среде определенного уровня и состава компонентов метаболизма. При этом участие почки в процессах обмена веществ в организме обеспечивается не только экскрецией субстратов и метаболитов, но и протекающими в ней биохимическими процессами. Почка метаболизирует фильтрующиеся с мочой пептиды малой молекулярной массы и денатурированные белки, возвращая в кровь аминокислоты и поддерживая в крови уровень этих пептидов, в том числе и гормонов. Ткань почки обладает способностью к новообразованию глюкозы - глюконеогенезу, причем в расчете на единицу массы органа эта способность у почки выше, чем в печени. При длительном голодании примерно половина поступающей в кровь глюкозы образуется почками. Почка является основным органом окислительного катаболизма инозитола, здесь синтезируются важный компонент клеточных мембран фосфатидилинозитол, глюкуроновая кислота, триацил-глицерины и фосфолипиды, поступающие в кровоток, а также простагландины и кинины.

Роль почек в регуляции артериального давления

Почки участвуют в регуляции артериального давления благодаря нескольким механизмам.

1. В почках образуется ренин, являющийся (глава 5) частью ренин-ангиотензин-альдостероновой системы (РААС), которая обеспечивает регуляцию тонуса кровеносных сосудов, поддержание баланса натрия в организме и объема циркулирующей крови, активацию адренергических механизмов регуляции насосной функции сердца и сосудистого тонуса. Уменьшение уровня давления крови в приносящей артериоле клубочка, повышение симпатического тонуса и концентрации натрия в моче дистального канальца активирует секрецию ренина, что с помощью ангиотензина - II и альдостерона способствует нормализации сниженной величины артериального давления. Неадекватно избыточная секреция ренина и активация РААС может быть причиной повышенного артериального давления.

2. Почка экскретирует большинство гормональных и физиологически активных веществ, обладающих выраженными сердечно-сосудистыми эффектами. За счет изменений экскреции поддерживается оптимальный уровень в крови гуморальных регуляторов артериального давления.

3. В почке образуются вещества депрессорного действия, т.е. снижающие тонус сосудов и артериальное давление - нейтральный депрессорный липид мозгового вещества, простагландины, кинины и др. Их образование получило название "антигипертензивной " функции почек, поскольку ее нарушение может приводить к артериальной гипертензии.

4. Почка экскретирует воду и электролиты, а их содержание в крови, вне - и внутриклеточной среде является важным для поддержания уровня артериального давления.

5. Одним из факторов участия почек в регуляции артериального давления является механизм "давление-диурез ". Повышение артериального давления ведет к увеличению диуреза, за счет потери кровью большого объема жидкости уменьшается объем циркулирующей крови и нормализуется артериальное давление. Напротив, падение давления крови вызывает снижение мочеобразования, задержку воды, повышение объема крови и восстановление уровня давления.

Loading...Loading...