Осложнения нейротрофические. Симптомокомплексы повреждений различных отделов спинного мозга. Нарушение нервной трофики. Нейродистрофический процесс

Трофика клетки – совокупность процессов, обеспечивающих жизнедеятельность клетки и поддержание генетически заложенных свойств. Расстройство трофики представляет собой дистрофию, развивающиеся дистрофические изменения составляют дистрофический процесс.

Нейродистрофический процессэто развивающееся нарушение трофики, которое обусловлено выпадением или изменением нервных влияний. Оно может возникать как в периферических тканях, так и в самой нервной системе.

Выпадение нервных влияний заключается:

В прекращении стимуляции иннервируемой структуры в связи с нарушением выделения или действия нейромедиатора;

В нарушении секреции или действия комедиаторов –веществ, которые выделяются вместе с нейромедиаторами и играют роль нейромодуляторов, обеспечивающих регуляцию рецепторных, мембранных и метаболических процессов;

В нарушении выделения и действия трофогенов.

Трофогены (трофины) – вещества различной, преимущественно белковой природы, осуществляющие собственно трофические эффекты поддержания жизнедеятельности и генетически заложенных свойств клетки.

Источники трофогенов:

Нейроны, из которых трофогены поступают с антероградным (ортоградным) аксоплазматическим током в клетки-реципиенты (другие нейроны или иннервируемые ткани на периферии);

Клетки периферических тканей, из которых трофогены поступают по нервам с ретроградным аксоплазматическим током в нейроны (рис. 5);

Глиальные и шванновские клетки, которые обмениваются с нейронами и их отростками трофическими веществами.

Вещества, играющие роль трофогенов, образуются также из сывороточных и иммунных белков. Трофическое воздействие могут оказывать некоторые гормоны. В регуляции трофических процессов принимают участие пептиды, ганглиозиды, некоторые нейромедиаторы.

К нормотрофогенам относятся различного рода белки, способствующие росту, дифференцировке и выживанию нейронов и соматических клеток, сохранению их структурного гомеостаза (например, фактор роста нервов).

В условиях патологии в нервной системе вырабатываются трофические вещества, вызывающие устойчивые патологические изменения клеток-реципиентов – патотрофогены (по Г.Н. Крыжановскому).

Патотрофогены синтезируются, например, в эпилептических нейронах – поступая с аксоплазматическим током в другие нейроны, они могут индуцировать у этих нейронов-реципиентов эпилептические свойства.

Патотрофогены могут распространяться по нервной системе как по трофической сети, что является одним из механизмов распространения патологического процесса.

Патотрофогены образуются и в других тканях.

Дистрофический процесс в денервированной мышце. Синтезируемые в теле нейрона и транспортируемые в терминаль с аксоплазматическим током вещества, выделяются нервным окончанием и поступают в мышечные волокна (см. рис. 4), выполняя функцию трофогенов.


Эффекты нейротрофогенов видны из опытов с перерезкой двигательного нерва : чем выше произведена перерезка, т.е. чем больше сохранилось трофогенов в периферическом отрезке нерва, тем позднее наступает денервационный синдром .

Нейрон вместе с иннервируемой им структурой (например, мышечным волокном) образует регионарный трофический контур (или регионарную трофическую систему, см. рис. 4). Например, если осуществить перекрестную реиннервацию мышц с разными исходными структурно-функциональными характеристиками (реиннервация «медленных» мышц волокнами от нейронов, иннервировавших «быстрые» мышцы, или наоборот), то реиннервированная мышца приобретает в значительной мере новые динамические характеристики: «медленная» становится «быстрой», а «быстрая» – «медленной».

Рис. 4. Трофические связи мотонейрона и мышцы. Вещества из тела мотонейрона (МН), его мембраны 1, перикариона 2, ядра 3 транспортируются с антероградным аксоплазматическим током 4 в терминаль 5. Отсюда они, а также вещества, синтезируемые в самой терминали 6, поступают транссинаптически через синаптическую щель (СЩ) в концевую пластинку (КП) и в мышечное волокно (МВ). Часть неиспользованного материала поступает обратно из терминали в тело нейрона с ретроградным аксоплазматическим током 7. Вещества, образующиеся в мышечном волокне и концевой пластинке, поступают транссинаптически в обратном направлении в терминаль и далее с ретроградным аксоплазматическим током 7 в тело нейрона - к ядру 8, в перикарион 9, к мембране дендритов 10. Некоторые из этих веществ могут поступать из дендритов (Д) транссинаптически в другой нейрон через его пресинаптическое окончание (ПО) и из этого нейрона далее в другие нейроны.

Между нейроном и мышцей происходит постоянный обмен веществами, поддерживающими трофику, структурную целостность и нормальную деятельность обоих образований. В этом обмене принимают участие глиальные клетки (Г). Все указанные образования создают регионарную трофическую систему (трофический контур)

В денервированном мышечном волокне возникают новые трофогены, которые активируют разрастание нервных волокон (sprouting ). Указанные явления исчезают после реиннервации.

Нейродистрофический процесс в других тканях. Взаимные трофические влияния существуют между каждой тканью и ее нервным аппаратом.

При перерезке афферентных нервов возникают дистрофические изменения кожи. Перерезка седалищного нерва (смешанный нерв, содержит чувствительные и двигательные волокна), вызывает образование дистрофической язвы в области скакательного сустава у крысы.

Классический опыт Ф. Мажанди (1824), послуживший началом разработки всей проблемы нервной трофики , заключается в перерезке у кролика первой ветви тройничного нерва. В результате операции развивается язвенный кератит, вокруг язвы возникает воспаление, и со стороны лимба в роговицу врастают сосуды, которые в ней в норме отсутствуют. Врастание сосудов является выражением патологического растормаживания сосудистых элементов – в дистрофически измененной роговице исчезает фактор, который тормозит в норме рост в нее сосудов, и появляется фактор, который активирует этот рост.

Вывод о существовании трофических нервов привел к представлению о нервной трофике, а результаты перерезки этих нервов – к представлению о нейрогенных (денервационных) дистрофиях.

В дальнейшем мнение о существовании трофической функции нервов нашло подтверждение в работах И.П. Павлова. Огромная заслуга И.П. Павлова состоит в том, что он распространил учение о рефлекторной деятельности нервной системы на нервно-трофические процессы, выдвигая и развивая проблему трофических рефлексов.

Последующие исследования К.М. Быкова (1954) и А.Д. Сперанского (1955) углубили и расширили представления о трофических расстройствах и их связи с нервной системой.

К.М. Быковым были получены данные, свидетельствующие о функциональной связи коры полушарий головного мозга и внутренних органов, обеспечивающих постоянство внутренней среды и нормальное течение трофических процессов в организме. Расстройства коркового управления висцеральными функциями разного происхождения могут привести к нейродистрофическим процессам в тканях, например к появлению язв в желудочно-кишечном тракте.

А.Д. Сперанским было установлено, что нарушение нервно-трофических процессов в организме может возникнуть при действии раздражителей разной природы и повреждении любого участка периферической или центральной нервной системы.

Дистрофические процессы в разных органах появляются и при раздражении периферических нервов, и нервных ганглиев, и самого мозга. Локализация первичного повреждения нервной системы вносила лишь различия в картину нейрогенных дистрофий, но механизмы их развития оказались однотипными . Поэтому процесс, развивающийся после повреждения какого-либо участка нервной системы, А.Д. Сперанский назвал стандартным нейро-дистрофическим процессом . Эти факты послужили основой формирования важного для патологии положения о существовании стереотипной формы нейрогенных расстройств трофики – нейродистрофии.

И.В. Давыдовский (1969) считал нервно-трофические нарушения ответственными за возникновение дистрофии, некроза и воспаления при авитаминозах, лепре, язве стопы, болезни Рейно, пролежнях, обморожениях и многих других патологических процессов и заболеваний.

Клинические проявления нейродистрофического процесса . Клиницистами описаны нейрогенные атрофии при денервации органов, особенно поперечно-полосатых мышц, нейрогенные трофические язвы, появляющиеся при разного рода повреждениях нервной системы. Установлена связь с нервной системой трофических нарушений кожи в форме измененного ороговения, роста волос, регенерации эпидермиса, депигментаций, а также расстройств в отложении жира – липоматозы.

Выявлены трофические расстройства нервного происхождения и при таких заболеваниях как склеродермия, сирингомиелия, спинная сухотка и др. Трофические расстройства обнаружены не только при нарушениях целостности нервов, сплетений или повреждениях мозга, но и при так называемых функциональных расстройствах нервной системы, например при неврозах.

Дополнительные факторы нейродистрофического процесса. К факторам, участвующим в развитии нейродистрофического процесса, относятся: сосудистые изменения в тканях, нарушения гемо- и лимфомикроциркуляции, патологическая проницаемость сосудистой стенки, нарушение транспорта в клетку питательных и пластических веществ.

Важным патогенетическим звеном является возникновение в дистрофической ткани новых антигенов в результате изменений генетического аппарата и синтеза белка, образуются антитела к тканевым антигенам, возникают аутоиммунный и воспалительный процессы. В указанный комплекс патологических процессов входят также вторичное инфицирование язвы, развитие инфекционных повреждений и воспаления. В целом нейродистрофические поражения тканей имеют сложный многофакторный патогенез.

Осложнения нейротрофические. Повреждения спинною мозга сопровождаются значительной перестройкой функционирования различных тканей и органов, что включается в представление о травматической болезни спинного мозга. Особенно грубые нейротрофические нарушения (НН) возникают в тех тканях и органах, которые получают вегетативную иннервацию из поврежденных сегментов позвоночника - из так называемых вегетативных спинальных центров.

Существенные нейротрофические нарушения возникают в тканях, оказавшихся ниже уровня повреждения спинного мозга. Они не получают адекватную эфферентную иннервацию. Из них не поступает и афферентная импульсация в высшие отделы ЦНС (в ядра гипоталамуса, кору головного мозга), в результате чего нарушается обратная связь с периферией и они лишаются возможности оказывать оптимальную нейрогуморальную регуляцию деятельности указанных тканей.

Нейротрофические нарушения при позвоночно-спинномозговой травме обусловленны также спинальным шоком, который включает рефлекторный аппарат в сегментах спинного мозга, расположенных ниже повреждения и на 2-3 сегмента выше его. Известно, что продолжительные и выраженные нейротрофические нарушения наблюдаются при длительном спинальном шоке, который поддерживается в связи с неустраненным источником раздражения поврежденного мозга.

Особенно грубые нейротрофические нарушения бывают при анатомическом перерыве спинного мозга. Для этого вида поражения характерны так называемые твердые отеки нижних конечностей, гнойно-некротические и язвенные формы колитов, энтероколитов и гастритов, острые желудочно-кишечные кровотечения, нередко приводящие таких больных к смерти, пиелонефриты, циститы. Указанные нейротрофические осложнения позвоночно-спинномозговой травмы (ПСМТ) настолько характерны для анатомического перерыва спинного мозга, что используются в качестве дифференциально-диагностических критериев.

Менее грубые нейротрофические нарушения наблюдаются также при других формах ПСМТ. Нейротрофические изменения в миокарде, наклонность к деструктивным формам пневмонии, дисфункция печени, поджелудочной железы, желудка, кишечника - все эти расстройства должны учитываться клиницистом и соответствующим образом корригироваться медикаментозной терапией. Нужно помнить, что у больных с ПСМТ имеется тенденция к камнеобразованию и в желчных, и в мочевыводящих путях. Этому способствует нарушение эвакуации их содержимого, а также местные нейротрофические нарушения. Поэтому таким больным необходимо назначать не только заместительную терапию, но и средства, препятствующие камнеобразованию.

Влияние нервной системы на реакции метаболизма (а через них - на характер и интенсивность функционирования и пластических процессов) различных органов и тканей (в том числе самих нервных образований) осуществляется либо самим фактом иннервации (регуляция функциональной активности и кровоснабжения иннервируемых структур), либо при помощи механизмов нейротрофического контроля.

Антиноцицептивная система

Концепция нейротрофического контроля заключается в постулировании взаимного регулирования функционального состояния как элементов нервной системы (нейронные пути и сети), так и иннервируемых ими ненервных структур (например, мышечных). Это реализуется при помощи воздействий, отличающихся от присущих нервной системе стандартных механизмов (распространение ПД по аксонам → секреция нейромедиатора в синаптическую щель → взаимодействие нейромедиатора с его рецепторами на постсинаптической мембране → постсинаптический электрогенез).

Механизмы нейротрофического контроля. Нейродистрофический процесс.

В рамках концепции нейротрофического контроля рассматривается несколько возможных механизмов его реализации.

Изменение импульсной активности в аксонах (частота ПД, интервалы между ними). Предполагается, что паттерны (от англ. pattern - образец) импульсов имеют информационное значение и изменяют проницаемость мембран клеток для ионов.

Образование специальных нейротрофических факторов («трофогенов»), транспортируемых по отросткам нервных клеток, секретируемых в синаптическую щель и взаимодействующих с постсинаптическими партнёрами.

Изменение величины ПП, ПД и,как следствие, уровня функционирования постсинаптического партнёра (старая идея атрофии органа от неупотребления).
Сохранение интактной синаптической передачи - состояния иннервированности . Развитие денервационного синдрома после повреждения нерва или блокады аксонного транспорта в нём является серьёзным следствием нарушения этого механизма.

Вероятные механизмы влияния нервной системы на обмен веществ в клетках.

Нейродистрофический процесс

Нарушение трофической функции нервной системы составляет патогенетическую основу нейродистрофического процесса. Нейродистрофический процесс может возникать как в периферических органах и тканях, так и в самой нервной системе. В типичном варианте нейродистрофический процесс развивается при денервационном синдроме.

Денервационный синдром.

Проявления денервационного синдрома (на примере денервации скелетной мышцы) представлены на рисунке.

Дисферментоз. Происходят изменения нормального спектра ферментов в клетке, их экспрессии, активности, появления или исчезновения изоферментов.
- «Эмбрионизация» обмена веществ. Реакции метаболизма приобретают свойства и признаки, характерные для ранних этапов развития организма (например, снижение активности процессов окисления, доминирование реакций анаэробного гликолиза, активация пентозного цикла).
- Ультраструктурные изменения клеточных элементов (прежде всего - мембран). При электронно-микроскопических исследованиях находят признаки набухания и разрушения крист митохондрий, лабилизации мембран лизосом, нарушения селективной проницаемости плазмолеммы.

Дистрофии и дисплазии различного характера вследствие нарушений экспрессии отдельных генов и расстройств метаболизма.

Действие аутоагрессивных AT, Т-клеток, макрофагов.

Гиперсенситизация денервированных структур к недостающему нейромедиатору. Так, в скелетных мышечных волокнах увеличен синтез рецепторов ацетилхолина. Рецепторы встраиваются не только в плазмолемму области постсинаптической мембраны, но и по всей поверхности мышечного волокна.

Типовые расстройства в постсинаптических структурах при нарушении аксонного транспорта.

Нарушения нейротрофической регуляции других органов при их денервации выражены в меньшей степени. При этом отмечается инертность механизмов гуморального контроля. Это сужает диапазон компенсаторных возможностей денервированного органа, особенно в условиях его функциональной нагрузки или повреждения. Такие же особенности наблюдаются и в трансплантированных органах (сердце, почки, печень).

Существенно, что при денервации снижается резистентность денервированного органа или ткани к повреждающим факторам: инфекции, механической травме, температурным и другим воздействиям.

Деафферентация.

Нейтрофические расстройства возникают не только при денервационном синдроме. Они развиваются при повреждении и афферентных структур нервной системы. Так, деафферентация, вызванная перерезкой чувствительного нерва, может приводить к не менее выраженным трофическим нарушениям в органе, чем его эфферентная денервация.
Нейродистрофические процессы являются компонентом практически всех форм патологии человека, обусловленных как функциональными расстройствами, так и органическими повреждениями нервной системы. Они проявляются не только изменениями функциональной активности органов, но и грубыми отклонениями в их структуре (атрофией, эрозиями, изъязвлениями, малигнизацией).

===============================================================================

Нейродистрофический процесс

Нейродистрофический процесс возникает в разных органах и тканях (в том числе и в самой нервной системе) в результате выпадения или нарушения различных нервных влияний со стороны афферентных, ассоциативных и эфферентных нейронов (их тел и отростков) соматической и автономной нервной системы.

В основе нейродистрофического процесса лежат следующие изменения.

Возникают расстройства синтеза, секреции и/или действия нейромедиаторов, комедиаторов (веществ, выделяющихся вместе с нейромедиаторами и играющих роль нейромодуляторов, которые обеспечивают регуляцию рецепторных и мембранных эффектов и участвуют в регуляции метаболических процессов) и трофогенов (макромолекулярных веществ, главным образом пептидов, осуществляющих собственно трофические влияния на нервные клетки и иннервируемые ими ткани). Трофогены (трофины, нейротрофические факторы) образуются главным образом в нейронах (поступают в клетки-мишени, движутся антероградным способом с аксоплазматическим током нейрона), глиальных и шванновских клетках, а также в клетках-мишенях тканей и органов (движутся ретроградным способом). Трофогены могут образовываться из белков крови и клеток иммунной системы. Они обеспечивают не только разнообразные синаптические, но и несинаптические межклеточные взаимодействия, индуцируют трофико-плас-тические и структурные процессы, дифференцировку, рост, развитие как нейронов, так и различных иннервируемых ими клеточно-тканевых структур.

Могут образовываться патотрофогены (вещества, образующиеся как в нейронах, так и в периферических тканях различных эффекторных структур). Патотрофогены индуцируют устойчивые патологические изменения в регулируемых нейронами исполнительных клеточно-тканевых структурах. Обычно они возникают при значительных, грубых повреждениях не только нейронов, но и регулируемых ими тканей, сопровождающихся нарушениями их структурных, метаболических и физиологических процессов. Нейродистрофический процесс усиливается при возникновении расстройств гемо- и лимфоциркуляции, энергетического и пластического видов обмена и различных трофических нарушений, возникающих как при органических (необратимых) повреждениях разных структур нейронов и нервных центров, так и при функциональных (обратимых) их изменениях (например, при неврозах).

==============================================================

Нейродистрофический процесс - это комплекс трофических нарушений в органах и тканях, возникающий при повреждении периферических нервов или других структур нервной системы. Особенно тяжелые нарушения развиваются при повреждении афферентных волокон и нервов.

Нейродистрофический процесс характеризуется следующими признаками :

1) структурными нарушениями - развитием язв на коже и слизистых оболочках, атрофией мышц, дистрофическими изменениями тканей, явлениями дегенерации и гибели клеток; 588

2) функциональными изменениями - повышением чувствительности денервированных структур к действию гуморальных факторов (закон Кеннона);

3) расстройствами обмена веществ - угнетением активности одних ферментов и повышением активности других, активацией биохимических процессов, характерных для эмбрионального периода развития.

В патогенезе нейрогенной дистрофии, развивающейся при травме периферического нерва, главную роль играют следующие факторы (по Н.Н.Зайко).

1. Прекращение поступления информации от денервированного органа в нервный центр (регионарный узел, спинной или головной мозг) и отсутствие корригирующих трофических влияний по сохранившимся нервам.

2. Прекращение выработки нервом нейрогормонов, в том числе и тех, которые приносятся к клетке посредством аксоплазматического тока.

3. Патологическая импульсация из центральной культи перерезанного нерва, усугубляющая нарушение функции нервных центров и возникшие на периферии нарушения обмена.

4. Проведение патологической импульсации перерезанным чувствительным нервом в обратном направлении (антидромно).

5. Изменения генетического аппарата клетки в денервированном органе и нарушение синтеза белков, приводящие к появлению веществ антигенной природы. Иммунная система при этом отвечает реакцией отторжения.

6. Неадекватные реакции, чаще всего повышенные, на биологически активные вещества, лекарственные препараты и другие гуморальные воздействия (закон денервации Кеннона). Например, после перерезание блуждающего нерва мышечная оболочка желудка становится более чувствительной к влиянию нервных медиаторов. Кроме того, в ней наблюдаются необычные изменения обмена веществ в ответ на действие некоторых гормонов.

7. Травмирующие воздействия среды (механическая травма, инфекция), способствующие более быстрому развитию трофических нарушений в денервированных тканях.

=======================================================

В статье изложены современные представления, в том числе результаты собственных клинико-экспериментальных исследований, о роли нарушений нейротрофического контроля в формировании невральных и мышечных нарушений при вертеброгенной патологии и других заболеваниях.

The role of the disorders of neurotrophic control in vertebral neurology

The article describes the modern view, including results of its own clinical and experimental studies on the role of neurotrophic control violations in the formation of neural and muscular disorders in vertebral disease and other diseases.

В настоящее время существуют различные точки зрения на механизмы развития остеохондроза позвоночника и его неврологических проявлений. Предпочтительнее рассматривать в этом качестве сочетанное влияние различных факторов: микротравматизации, статодинамических нагрузок, инволютивных изменений, наследственного предрасположения, аутоиммунных, сосудистых, обменных и эндокринных нарушений, а также различных инфекционно-токсических воздействий. Какими бы ни были механизмы вертеброгенных заболеваний, наиболее существенным их компонентом является воздействие на нервные элементы, в первую очередь, на нервные стволы. Через них осуществляется и воздействие на мышцы, чье участие в реализации всей клинической картины общеизвестно .

В нашей клинике за последние 30 лет установлена и подробно исследована роль нарушений нейротрофического контроля (НТК) в патогенезе невральных и мышечных синдромов как при остеохондрозе позвоночника, так и при других заболеваниях .

До настоящего времени, по данным литературы, рассматривались два основных направления исследования нервной трофики применительно к мышечной деятельности: первое из них - вопросы адаптационно-трофического влияния симпатической нервной системы на мышцу; второе направление исследований нервной трофики рассматривает более узкий круг взаимоотношений, существующих между мотонейроном и иннервируемыми им мышечными волокнами. Оно включает вопросы: оказывает ли мотонейрон специфические трофические влияния на мышечное волокно?; опосредованы ли трофические влияния мотонейрона эффектами активности мышцы, или мотонейрон оказывает на мышцу два типа влияний: импульсные, несущие информацию о необходимости и характере мышечного сокращения, и трофические, реализуемые передачей ряда химических соединений от нерва к мышце?

Однако дальнейшее развитие науки поставило под сомнение адаптационно-трофическое влияние симпатической нервной системы на скелетную мускулатуру, и практически предпочтение отдано двигательным нервам. Проблему нервной трофики с конца ХХ века начали рассматривать по второму направлению, т.е. исходя из понимания нейротрофических влияний как конкретных взаимоотношений между мотонейроном и иннервируемыми им мышечными волокнами.

В задачу неврологов входит рассмотрение возможности анализа механизмов нейротрофических влияний у пациентов с вертеброгенной патологией с использованием электронейромиографических, тензометрических, биохимических методов и изучения результатов диагностических биопсий .

Правомерна ли вообще постановка такой задачи? Может ли соревноваться невролог, работающий в клинике, с экспериментатором, имеющим возможность проводить тончайшие исследования на животных? При ответе следует, прежде всего, помнить, что проблема нервной трофики всегда была традиционной для клиницистов-неврологов и возникла в недрах клинической патологии. Со времени первых описаний экстравертебральных мышечно-тонических, нейромиодистрофических и нейро-сосудистых синдромов был поставлен и в последующем постоянно дискутировался вопрос: являются ли они в своем происхождении рефлекторного или неврогенного характера? Ответ на этот вопрос можно получить при анализе результатов изучения вертеброгенных компрессионно-невральных и миофасциальных болевых проявлений с помощью современных биохимических, гистоморфологических и электрофизиологических исследований.

Общие сведения о нейротрофическом контроле

Под нервной трофикой понимают нейрональные влияния, необходимые для поддержания нормальной жизнедеятельности иннервируемых структур: нейронов и соматических клеток. Термин «нервная трофика» не вполне точен, так как выделяемые нервными окончаниями и оказывающие трофическое влияние вещества не относятся к питательным субстратам и не обеспечивают питание клетки-мишени. В большей степени они регулируют структурно-метаболические процессы, поэтому в последние годы наибольшее распространение получил термин «нейротрофический контроль».

При выпадении влияния нейрона на клетку-мишень, связанного с перерывом аксона, нарушаются или прекращаются синаптическое проведение и выделение нервными окончаниями нейромедиаторов и нейромодуляторов, реализующих функциональную стимуляцию тканевых структур и влияющих на их метаболизм. Эти нарушения вносят свой вклад в развитие трофических нарушений клеток-мишеней. Тем не менее, под нарушением собственно трофических влияний понимают изменения, связанные с прекращением действия специальных трофических факторов, образующихся в нейронах и иннервируемых структурах - так называемых нейротрофических факторов (НТФ) или трофинов .

НТФ - группа веществ белковой природы, обеспечивающих нормальную жизнедеятельность, выживание, рост, развитие и дифференцировку нейронов и определение нейромедиаторной природы нейронов. В отличие от нейромедиагров НТФ не выполняют функцию синаптической передачи сигнала, они также не модулируют связывание рецепторами иейромедиатров, как это делают иейромодуляторы. НТФ осуществляют медленные несинаптические межклеточные взаимодействия и обусловливают долговременные пластические изменения клеток-мишеней. Установлено, что эффекты НТФ связаны преимущественно с их влиянием на процессы транскрипции, трансляции и посттрансляциоиной модификации , что сближает их по механизму действия с пептидными и стероидными гормонами.

Таковы общие сведения о НТК. Рассмотрим более подробно частный случай НТК в системе «мотонейрон-мышечное волокно».

Нейротрофический контроль в системе «мотонейрон-мышечное волокно»

В нервно-мышечном синапсе секреция из терминалей ацетилхолина, его взаимодействие со специфическими рецепторами, встроенными в постсинаптическую мембрану, и целый ряд последующих событий приводят к сокращению скелетных мышечных волокон. Весь процесс развивается в течение десятков миллисекунд. Через тот же синапс осуществляется нейротрофический контроль (НТК). О его наличии судят по состоянию параметров, характеризующих возможность выполнения мышечными волокнами контрактильной функции. При отсутствии же нервно-мышечных синапсов в скелетных мышечных волокнах развивается денервационный синдром. Простейший экспериментальный подход для доказательства НТК, реализуемого через синапсы - денервация мышцы путем перерезки нервов.

НТК существенно отличается от собственно синаптической передачи. Время, необходимое для реализации этих процессов, составляет миллисекунды для собственно передачи и последующего сокращения и десятки минут и часы - для развития явлений, свидетельствующих о наличии нейротрофического влияния мотонейронов. Общие эффекты НТК - дифференцировка и поддержание дифференцированного состояния мышечных волокон .

Относительно рассматриваемой модели «мотонейрон-скелетное мышечное волокно» под НТК можно понимать долговременное влияние мотонейрона на мышечные волокна, выражающееся в поддержании дифференцированного состояния и осуществляемое вне прямой связи с синаптической передачей и последующей двигательной активностью. Таким образом, для скелетных мышечных волокон инструктирующими клетками, согласно определению, являются элементы нервной системы, а именно мотонейроны.

В этой связи необходимо акцентировать внимание на двух важных обстоятельствах. Во-первых, в системе «мотонейрон-мышечное волокно» существуют двусторонние трофические влияния, т.е факторы, образующиеся в мышечном волокне, участвуют в поддержании жизнеобеспечения и регуляции функции мотонейрона. Во-вторых, следует учитывать, что мотонейрон находится под НТК других нейронов - верхнего мотонейрона вставочных нейронов, а также глиальных клеток, и эти элементы опосредованно, через влияние на мотонейрон, также могут оказывать нейротрофическое влияние на мышечное волокно. Чувствительные нейроны реализуют НТК по отношению к интрафузальным, а не экстрафузальным волокнам. Что касается симпатической иннервации, то существуют довольно убедительные данные об отсутствии прямой синаптической иннервации мышечных волокон у млекопитающих . Типичные феномены, по наличию которых судят о прекращении НТК скелетных мышечных волокон, при длительной симпатической денервации мышц не развиваются .

Согласно современным представлениям , в реализации трофического влияния нерва на мышцу принимают участие как импульсные, так и неимпульсные механизмы. Существует несколько экспериментальных подходов, которые позволили убедительно показать значение различных механизмов НТК в поддержании дифференцированного состояния скелетных мышц.

  1. Перерезка двигательного нерва, при которой мышцы лишаются как электрических влияний, так и воздействия НТФ со стороны мотонейрона. При этом установлено, что скорость развития денервационных изменений в скелетных мышечных волокнах зависит от уровня перерезки: чем ближе к мышце произведена перерезка, тем быстрее наступают денервационные изменения.
  2. Изучение «вклада» аксонного транспорта в НТК в экспериментах с помощью блокады аксонного транспорта путём аппликаций статокинетиков на двигательный нерв (импульсация по аксону при этом не нарушается).
  3. Исследование роли импульсной активности в реализации НТК в экспериментах с принудительной электрической стимуляцией мышцы с нехарактерной для нее частотой.
  4. Определение влияния так называемых быстрых и медленных мотонейронов на различные мышечные волокна в экспериментах с перекрестной реиннервацией, когда к мышце подшивали «чужой» для нее нерв.

Рассмотрим отдельные механизмы НТК в системе «мотонейрон-скелетное мышечное волокно». В основе неимпульсного механизма НТК лежит обмен НТФ между нейроном и иннервируемым мышечным волокном. Как известно, аксон обеспечивает не только проведение возбуждения, но и транспорт различных веществ из тела нейрона в нервное окончание и в обратном направлении. Выделяют три вида аксонного транспорта:

1. Быстрый антероградный транспорт. Его скорость составляет приблизительно 400 мм/сут. Быстрым аксонным транспортом переносятся преимущественно вещества и структуры, необходимые для синаптической деятельности: митохондрии, пептидные медиаторы и нейромодуляторы, ферменты, необходимые для синтеза медиатора (в частности, ацетилхолинтрансфераза), а также липидные и белковые компоненты мембраны.

2. Медленный антероградный транспорт, его скорость составляет 1-5 мм/сут. Он обеспечивает перенос компонентов цитоскелета (в частности, субъединицы микротрубочек и нейрофиламентов), некоторых ферментов, необходимых для промежуточного метаболизма в аксоне, а также, вероятно, и большинства НТФ.

3. Быстрый ретроградный транспорт. Его скорость составляет 200-300 мм/сут. Таким образом, с клетки мышечного волокна поступают поврежденные компоненты мембран и органелл, а также абсорбированные экзогенные вещества, в том числе и трофические факторы.

Аксональный транспорт обеспечивают компоненты цитоскелета аксона: микротрубочки, микрофиламенты, нейрофиламенты. Быстрый антероградный и ретроградный транспорт - энергозависимый процесс, для которого необходимо присутствие АТФ и ионов Са 2+ . Перенос веществ осуществляется в везикулах, которые поступательно движутся вдоль микротрубочек благодаря функции кинезинового и динеинового молекулярных моторов: первый обеспечивает движение от тела клетки (т.е. антероградный транспорт), второй – в обратном направлении (т.е. ретроградный транспорт). Механизмы, обеспечивающие медленный антероградный транспорт, пока не изучены, предполагают также участие молекулярных моторов

Вещества, разрушающие микротрубочки и нейрофиламенты (в частности, колхицин, винбластин и др.), недостаток АТФ и метаболические яды, вызывающие дефицит энергии, нарушают аксональный транспорт. Аксональный транспорт нарушается при поражении аксонов вследствие дефицита витаминов В 1 и В 6 , отравления солями тяжелых металлов, воздействия некоторых лекарственных средств, а также при сахарном диабете и сдавлении нервов. Кроме того, аксональный транспорт нарушается при первичном поражении мотонейрона и недостатке НТФ, в том числе вырабатываемых иннервируемыми клетками.

Нарушения НТК представляют собой один из важнейших патогенетических факторов многих заболеваний центральной и периферической нервной системы. Общеизвестна ведущая роль расстройства НТК в патогенезе периферических нейропатий:

1. Мутации в генах НТФ или рецепторов к ним обусловливают развитие ряда наследственных нейропатий. В частности, мутации в гене Trk типа А обусловливают развитие некоторых форм наследственной сенсорно-вегетативной нейропатии (тип IV); нарушения экспрессии фактора роста нервов рассматривают как возможную причину семейной дизавтономии (синдрома Райли-Дея) и т.д.

2. Нарушения синтеза и транспорта фактора роста нервов - важный патогенетический фактор диабетической полинейропатии, а нарушения синтеза инсулиноподобного фактора роста-1 могут обусловливать повышенную чувствительность нервов к различным неблагоприятным факторам у больных сахарным диабетом.

3. Наконец, нарушение аксонального транспорта и, следовательно, НТК составляет основу многих токсических и лекарственных нейропатий.

Приведенные выше примеры демонстрируют случаи первичного нарушения синтеза или транспорта НТФ. Тем не менее, следует учитывать, что при любых поражениях нервов наблюдаются вторичные нарушения аксонального транспорта вследствие отека, сдавления аксонов или метаболических нарушений в них, поэтому расстройство НТК - неотъемлемая патогенетическая составляющая нейропатий любой этиологии.

В настоящее время получены сведения о роли нарушений аксоплазматического транспорта при заболеваниях периферического двигательного нейрона у человека и других нейродегенеративных заболеваниях. Но до 90-х годов XX века не было никаких данных о роли нарушения НТК в формировании невральных и мышечных синдромов остеохондроза позвоночника.

Основные механизмы нарушения нейротрофического контроля при остеохондрозе позвоночника

Существует два основных механизма нарушения НТК при остеохондрозе позвоночника. Во-первых, в условиях нарушения нормальных взаимоотношений между корешком и диском возможно изолированное нарушение аксоплазматического транспорта при сохранной передаче импульсов. Согласно концепции двойного сдавления, сформулированной Upton и McComas (1973), воздействие на корешки может нарушать аксональный транспорт, что вследствие нарушения метаболизма в аксоне обусловливает повышенную чувствительность нервов к различным неблагоприятным факторам, в частности к травматическим воздействиям. Естественно предположить, что в результате диско-радикулярного конфликта происходит изолированное нарушение аксоплазмагического транспорта при сохранной передаче импульсов вследствие субклинического воздействия на корешки. Данного воздействия недостаточно для развития клинически значимой радикулопатии, но нарушения аксонального транспорта способствуют не только повышенной ранимости нервов, но и формированию экстравертебральных мышечных проявлений в результате нарушения и выпадения НТК.

Во-вторых, возможен также рефлекторный механизм нарушения нейротрофического контроля по двигательному нерву в результате изменения функционального состояния мотонейронов под влиянием патологической импульсации из поврежденного позвоночно-двигательного сегмента из участков нейромиофиброза при постуральных и викарных перегрузках.

Экспериментальный подход в обосновании рефлекторных нарушений НТК при остеохондрозе позвоночника

С целью уточнения роли нарушения НТК (при интактности импульсной проводимости) в формировании триггерных зон миофиброза в нашей клинике проведены экспериментальные исследования на животных, в ходе которых убедительно продемонстрирована идентичность клинических, морфологических, биохимических и нейрофизиологических изменений как при прямом, так и рефлекторном нарушении аксонального транспорта. В качестве экспериментальной модели выбран метод аппликации цитостатического вещества колхицина на корешок L 5 , а также метод рефлекторного воздействия на аксоплазматический транспорт. Колхицин в определенной концентрации, воздействуя на корешок, нарушает проводимость аксоплазматического тока и, сохраняя импульсную проводимость, моделирует некоторые возможные варианты экстравертебральной патологии с преимущественным нарушением аксонного тока .

У экспериментальных животных создавались очаги поражения 1) в корешковом нерве L 5 , 2) межпозвоночном диске и 3) икроножной мышце. Такая локализация очагов поражения была необходима для выяснения рефлекторного воздействия на аксоплазматический ток с дальнейшим нарушением нейротрофического неимпульсного контроля. Мы учитывали, что у пациентов с сочетанными невральными и миодистрофическими нарушениями поясничного остеохондроза обычно присутствует несколько очагов поражения (по крайней мере, не меньше двух: вертебрального и экстравертебрального) и, моделируя эту ситуацию у экспериментальных животных, формировали различные очаги поражения.

В зависимости от вида поражения все животные были разделены на группы: 1) с аппликацией колхицина на корешок L 5 ; 2) с поврежденным диском; 3) с аппликацией колхицина и пораженной икроножной мышцей; 4) с повреждением мышцы и диска; 5) контрольные животные.

Наши исследования подтвердили известный факт, что цитостатик (колхицин), вызывая блокаду аксоплазматического транспорта (при сохранной импульсной проводимости), приводит к снятию трофического контроля. Подобным оказался эффект рефлекторного воздействия на мышцу в том случае, когда кроме раздражения рецепторов межпозвоночного диска животного выполнялось локальное повреждение на периферии, проявляющееся в изменении метаболизма мышц: 1) мышца теряет присущий ей уровень дифференцировки, о чем свидетельствует появление участков перимизия, воспалительных клеток вокруг некротизированных волокон как I, так и II типа; 2) происходит сдвиг в гистохимическом типовом составе - замедление «быстрых» и убыстрение «медленных» мышечных волокон, т.е. обнаруживаются признаки дедифференциации; 3) происходит изменение изоферментного состава спектра лактатдегидрогеназы (увеличение активности быстромигрирующих в «быстрой» мышце, а в «медленной» - тенденция к возрастанию активности изоформы ЛДГ 2); 4) отмечается изменение электрофизиологических параметров за счет перестройки на различных уровнях регуляции мышечного сокращения, т.е. характеристика целой мышцы зависит от стадий денервационно-реиннервационного процесса - на ранних стадиях обнаруживается сдвиг гистограмм влево, уменьшение силы и скоростных характеристик одиночного сокращения, а на поздних этапах происходит их возрастание и сдвиг гистограмм вправо (признаки укрупнения территорий двигательных единиц (ДЕ) и увеличение количества мышечных волокон в них). Указанные изменения, наблюдаемые в мышце, носят характер денервационноподобных.

Клинически у животных с аппликацией колхицина на спинальный нерв, а также при повреждении мышцы и диска в интактных мышцах, были обнаружены болезненные узелки - так называемые участки миофиброза. По всей вероятности, механизм формирования миофиброза обусловлен нарушением нейротрофического неимпульсного контроля в результате блокады аксоплазматического транспорта. Очевидно, формирование миофиброза является вторичным, как результат выключения трофического влияния нервных волокон, обеспечивающего поддержание дифференцированного состояния скелетных мышечных волокон.

Мы убедились, что признаки денервационно-реинервационного процесса обнаружены не только в эксперименте, но и также и у пациентов с рефлекторными миодистрофическими синдромами. Можно полагать, что причиной поражения ишиокруральных мышц (передней большеберцовой, медиальной порции икроножной) является «скрытая», или субклиническая стадия компрессия корешков L5 и S1, ведущей к развитию денервационно-реинервационного процесса и реорганизации двигательных единиц в мышце. Очевидно, выявляемая перестройка структуры двигательных единиц происходит не только вследствие частичной денервации мышцы, а также за счет механизмов, аналогичных тем, которые обеспечивают «транснейрональное» включение спрутинга в мышцах с сохранной иннервацией . По всей вероятности, они включаются при ирритации синувертебрального возвратного нерва Люшка, в процессе поражения позвоночно-двигательного сегмента и формирования неадекватного двигательного стереотипа.

Заключение

Таким образом, проведенные нами исследования показали, что при нарушении долговременного нейротрофического влияния, реализуемого аксонным транспортом, как у экспериментальных животных (наложение колхицина или рефлекторное воздействие на аксональный транспорт), так и у пациентов с сочетанными компрессионно-невральными проявлениями при вертеброгенной патологии происходит следующее: уменьшаются тетанический индекс и площадь поперечного сечения, замедляются «быстрые» и убыстряются «медленные» мышечные волокна. Это признаки дедифференциации. Выключение же импульсной активности наряду с атрофией мышечных волокон вызывает увеличение тетанического индекса, сопровождающееся удлинением времени сокращения. При сравнении полученных данных установлено сходство механомиографических, биохимических и морфогистохимических сдвигов в эксперименте и при обсуждаемой патологии человека. Исключение составляют волокна-мишени и преимущественная атрофия волокон II типа. Эти признаки отсутствовали у животных всех групп; они, по-видимому, непатогномоничны для нарушения нейротрофического неимпульсного контроля. Общность данных тенденций указывает на определенную роль нарушения аксонного транспорта в формировании миофасциальных триггерных зон. Это нарушение, как следует из результатов экспериментальных исследований, возможно и без пересечения корешка, т.е. в результате рефлекторного воздействия на аксонный транспорт.

Вероятно, формирование миофасциальных триггерных зон при различных заболеваниях имеет много общих патогенетических механизмов. Начальные же звенья патологического процесса различны. У больных с вертеброгенными поражениями периферической нервной системы первоначально, видимо, происходят изменения функциональной морфологии двигательных единиц. Эти изменения вызывают денервационно-реиннервационные изменения и нарушения нейротрофического неимпульсного контроля.

Результаты наших исследований позволяют предположить, что в основе вертеброгенных неврально-миодистрофических поражений лежат изменения периферической нервной системы, заключающиеся в нарушении функций и дегенерации аксональных нейрофиламентов и микротрубочек. Эти первичные изменения могут быть вызваны воздействием цитостатика на корешок, а при наличии периферического очага эти изменения могут происходить и по рефлекторному механизму. При этом на периферии, в мышцах возникают вторично нейродистрофические нарушения из-за изменений трофических мотонейрональных влияний.

С внедрением современной теории нейротрофического контроля в клиническую практику получило развитие совершенно новое направление в изучении механизмов формирования мышечных нарушений при различных заболеваниях. Как известно, посттравматические иммобилизационные контрактуры являются серьезным осложнением при лечении травм опорно-двигательного аппарата. В исследованиях нашего сотрудника Д.Л. Галямова было доказано, что спровоцированные травмой изменения в нервной системе приводят к рефлекторному нарушению синтеза нейротрофических факторов, в сегментарных мотонейронах, вследствие чего формируется миогенный компонент указанных контрактур. Есть основание полагать, что преобладание денервационных изменений в мышцах, особенно при длительных сроках бездействия, обусловлено тормозящим влиянием супраспинальных структур не только на сегментарные мотонейроны, но и на чувствительные. Кроме того, нарушается отлаженный механизм супраспинально-сегментарных взаимодействий, что проявляется в форме фасцикуляциоподобного феномена. Сущность его заключается в том, что торможение активности двигательной единицы у пациента, которую он произвольно активировал, происходит с трудом.

Снижение нейротрофической потенции мотонейронов подтверждается гистологически обнаруживаемыми изменениями нисслевского вещества, а также изменением содержания РНК в соме клетки. Этот факт показывает, что мотонейрон является клеткой-мишенью для трофического воздействия других групп нейронов.

Грубые денервационные изменения, гипотрофия мышц обычно сочетаются с гипотонией. В наших исследованиях у больных наблюдалось повышение тургора мягких тканей. Этот факт принято объяснять развитием миофиброза, но при банальной постельной гиподинамии (гипокинезии) также отмечается увеличение доли соединительной ткани при отсутствии гипертонии. Для объяснения данного противоречия целесообразно использовать феномен Гинецинского-Орбели и тономоторный феномен. Известно, что при перитоните, мышцы брюшного пресса формируют защитный дефанс. Способность мышц в течение длительного времени противодействовать утомлению объясняется параллельной гиперактивностью симпатической нервной системы, оказывающей адаптивное влияние. Одновременная стимуляция двигательного и симпатического нервов усиливает ресинтез АТФ, необходимый для работы актин-миозинового комплекса. Это оказывается возможным, вероятно, благодаря повышенному гидролизу креатинфосфата, так как показано, что в первые сутки после травмы в мышцах значительно снижается концентрация креатинфосфата, и, кроме того, АТФ. В условиях нарушения нейротрофического обеспечения мышечных волокон и перехода с окислительного декарбоксилирования глюкозы на гликолитический путь концентрация АТФ может стать ниже критической, и разовьется так называемое трупное окоченение.

Нам представляется возможным такой путь формирования гипертонуса иммобилизованных мышц. Вызванный болевыми ощущениями мышечный спазм трансформируется в более устойчивое состояние, и поэтому ни наркоз, ни новокаиновые блокады не восстанавливают полного объема движений.

В результате установления миогенного компонента посттравматических и иммобилизационных контрактур была изменена стратегия лечебно-реабилитационных мероприятий . Так, применение электростимуляции в сочетании с изометрической гимнастикой на иммобилизационном этапе лечения травм длинных трубчатых костей позволяет снизить степень выраженности контрактуры в сравнении с контрольной группой и сократить сроки лечения на две недели как в общем, так и в стационаре. В нашей лаборатории М.Б. Гарифьяновой была впервые создана экспериментальная модель вторичных контрактур мимических мышц посредством передавливания нерва и аппликации колхицина. Создание моделей, наиболее близких к клиническим условиям, позволило установить влияние нейротрофического контроля на формирование синдромов вторичных контрактур мимических мышц. В результате наших исследований стало возможным разработать комплексный клинико-электрофизиологический и гистохимический алгоритм для ранней диагностики вторичной контрактуры, а также предложить лечебно-реабилитационные мероприятия.

Усилиями Ф.И. Девликамовой многие миофасциальные болевые синдромы были не только изучены и описаны, но и осмыслены как нарушения управления двигательными актами и интимными нейрофизиологическими и морфологическими процессами в поперечно-полосатой мускулатуре.

Клинические идеи в вертеброневрологии и изучении роли нарушения нейротрофического контроля в патогенезе невральных и миофасциальных болевых синдромов позволили углубить представления об обратной связи из опорно-двигательного аппарата в адрес центра, о взаимодействии анализаторов. Это обеспечило новые революционные подходы в лечении пациентов с вертеброгенной патологией.

Ф.А. Хабиров

Казанская государственная медицинская академия

Хабиров Фарит Ахатович — доктор медицинских наук, профессор, заведующий кафедрой неврологии и мануальной терапии КГМА

Литература:

1. Айдаров, В.И. Физическая реабилитация больных с иммобилизационными контрактурами и их раннее предупреждение: автореф. дис. … кандидата мед. наук / В.И. Айдаров. - Казань, 1997. - 18 с.

2. Богданов, Э.И. Общие закономерности изменений сократительных свойств при патологии нервной регуляции скелетных мышц: автореф. дис. … д-ра мед. наук / Э.И.Богданов. - Казань, 1989. - 24 с.

3. Волков, Е.М. Нейротрофический контроль функциональных свойств поверхностной мембраны мышечного волокна / Волков, Е.М., Г.И. Полетаев // Механизмы нейрональной регуляции мышечной функции. - Л.: Наука, 1988. - С. 5-26.

4. Галямов, Д.Л. Нарушение нейротрофического контроля мышц при посттравматических иммобилизационных контрактурах: автореф. … канд. мед. наук / Д.Л. Галямов. - Казань, 1995. - 14 с.

5. Гарифьянова, М.Б. Вторичная контрактура мимической контратуры (клинические нейрофизиологические и морфогистохимические аспекты. Патогенез. Лечение): автореф. дис. … д-ра мед.наук / М.Б. Гарифьянова. - Казань, 1997. - 28 с.

6. Гехт, Б.М. Трофический потенциал мотонейрона и проблема компенсаторной иннервации в патологии / Б.М. Гехт, Л.Ф. Касаткина, А.Г. Санадзе, И.А. Строков // Механизмы нейрональной регуляции мышечной функции. - Л.: Медицина, 1988. - С. 53-78.

7. Девликамова, Ф.И. Морфофункциональная организация скелетных мышц у больных с миофасциальным болевым синдромом (клинико-патофизиологические исследования): автореф. дис. … д-ра мед. наук / Ф.И. Девликамова. - Казань, 2004. - 25 с.

8. Попелянский, Я.Ю. Ортопедическая неврология (вертеброневрология): руководство для врачей / Я.Ю. Попелянский. - Казань, 1997. - Т. 1- 554 с.

9. Улумбеков, Э.Г. Нейротрофический контроль фазных мышечных волокон / Э.Г. Улумбеков, Н.П. Резвяк // Нервный контроль структуно-функциональной организации мышцы. - Л.: Наука, 1980. - С. 84-104.

10. Хабиров, Ф.А. Неврально-мышечные трофические нарушения при поясничном остеохондрозе: автореф. дис. д-ра мед.наук / Ф.А. Хабиров. - М., 1991. - 28 с.

11. Хабиров, Ф.А. Руководство по клинической неврологии позвоночника / Ф.А. Хабиров. - Казань: Медицина. - 2006. - 518 с.

12. Rotshen-Ker., S. The trans neuronal induction of sprouting and synapse formation in intact mouse muscles / S. Rotshen-Ker., M. Tal // J. Physiol., 1985. - Vol. 360. - P. 387-396.

13.Upton, A.R. The double crish in nerve entrapment Syndromes / A.R. Upton, A.J. Mc Comas // Lancet. - 1973. - Vol. 2, № 7826. - P. 359-362.

Не всегда заболевание имеет характерные клинические признаки, по которым его можно точно определить. Некоторые болезни настолько многолики, что их диагностика подчас сопряжена со значительными трудностями.

К патологии с множеством клинических проявлений относится диэнцефальный, или гипоталамический, синдром. Он объединяет в себе вегетативные, эндокринные, обменные, психические и трофические расстройства, обусловленные поражением гипоталамуса.

Диэнцефальный синдром и гипоталамус

Гипоталамус (лат. hypothalamus) или подбугорье – отдел головного мозга, который страдает при диэнцефальном синдроме. Это высший вегетативный центр, осуществляющий контроль за работой всех желез внутренней секреции: гипофиза, надпочечников, яичников щитовидной и поджелудочной желез.

В ведении гипоталамуса находится управление дыхательной, сердечно-сосудистой, пищеварительной и выделительной систем. Он отвечает за регуляцию температуры тела, ритмов сна и бодрствования, чувства жажды и голода, а также эмоций и поведения человека.

Причины развития диэнцефального синдрома

Сосуды, участвующие в кровоснабжении гипоталамуса, отличаются повышенной проницаемостью. Это делает их незащищенными перед различными повреждающими факторами, воздействие которых и вызывает развитие диэнцефального синдрома. Функция гипоталамуса может пострадать по следующим причинам:

  • черепно-мозговой травмы;
  • перенесенной нейроинфекции;
  • наличия опухолей, которые оказывают давление на гипоталамус;
  • тяжелых болезней внутренних органов;
  • гормональной перестройки во время беременности;
  • родовой травмы или послеродового кровотечения;
  • недостаточного белкового питания, голодания, нервной анорексии;
  • стресса либо психической травмы;
  • наличия очагов хронической инфекции ЛОР-органов, мочеполовой системы, желудочно-кишечного тракта;
  • интоксикации (приема алкоголя, курения, употребления наркотиков, профессиональных вредных факторов, загрязнения окружающей среды).

Учитывая многогранную функцию гипоталамуса в деятельности организма, клиническая картина его поражений крайне разнообразна.

Разнообразная клиническая картина диэнцефального синдрома

Из-за множества симптомов с диэнцефальным синдромом достаточно часто сталкиваются врачи разных специальностей: эндокринологи, терапевты, гинекологи, неврологи, хирурги, психиатры, дерматологи и др.

При диэнцефальном синдроме отмечаются следующие виды расстройств:

Вегетативно-сосудистые нарушения проявляются кризами, во время которых возникают: удушье, слабость, сонливость, потливость, тошнота, а также отмечается редкий пульс, падение артериального давления, бледность, сниженная двигательная активность. На смену вегетативно-сосудистым нередко приходят симпато-адреналовые кризы, для которых характерно, наоборот, повышение артериального давления.

Нарушение терморегуляции характеризуется появлением во время криза озноба, усиленного потоотделения, повышения температуры тела до 38-39°C и нередко непроизвольного мочеиспускания.

Нервно-мышечные расстройства выражаются в астении, общей слабости и адинамии, сопровождаются субфебрилитетом, чувством голода и жажды, бессонницей и неприятными ощущениями в области сердца. Течение заболевания чаще приступообразное.

Нейротрофические нарушения проявляются зудом, сухостью, возникновением нейродермита и пролежней, язв желудочно-кишечного тракта, а также размягчением костей (остеомаляцией). На этом фоне отмечаются: сонливость, общая слабость, адинамия, тремор и чувство жажды. Течение заболевания кризовое.

Нервно-психические расстройства характеризуются астенией, нарушением сна, снижением уровня психической активности. При этом возникают галлюцинации, состояние тревоги и страха, частая смена настроения, ипохондрические расстройства, бредовые состояния.

Гипоталамическая эпилепсия особая форма эпилептических припадков, при которой первичный очаг располагается в гипоталамусе. От него возбуждение передается на корковые и подкорковые двигательные центры. Во время приступов у пациента появляется сердцебиение с подъемом температуры и артериального давления (АД), тремор, расстройство дыхания, страхи. На электроэнцефалограмме (ЭЭГ) регистрируются эпилептические вспышки в виде одиночных волн.

Нейроэндокринные нарушения связаны с расстройством функции не только гипоталамуса, но и других эндокринных желез: щитовидной, надпочечников, гипофиза. Нередко наблюдаются изолированные формы нарушений эндокринных функций, такие как: несахарный диабет, гипотиреоз, болезнь Иценко-Кушинга, синдром Шихана. Последние два часто встречаются в практике гинеколога, поэтому о них мы поговорим подробнее.

Диэнцефальный синдром: болезнь Иценко-Кушинга

Болезнь Иценко-Кушинга – это тяжёлое нейроэндокринное заболевание, при котором из-за повреждения гипоталамуса повышается продукция его специфического фактора, вызывающего избыточный синтез гипофизом адренокортикотропного гормона (АКТГ) и, как следствие, глюкокортикоидов надпочечниками.

Данное заболевание часто развивается во время полового созревания, пос­ле родов и абортов, что объясняется ранимостью гипоталамических отделов ЦНС в эти периоды, а также может возникнуть вследствие травмы головного мозга или нейроинфекции.

У пациентов с болезнью Иценко-Кушинга отмечается повышение артериального давления и сахара крови. При данной патологии наблюдается отложение жира в области шеи, лица живота и бедер. Лицо становится лунообразным, щеки – красными. На коже образуются багровые полосы (стрии), на теле появляется сыпь и фурункулы.

У женщин, страдающих болезнью Иценко-Кушинга, нарушается менструальный цикл вплоть до полного исчезновения менструаций (аменореи), возникает бесплодие, снижается половое влечение, отмечается аноргазмия.

Следует отметить, что аналогичная клиническая картина развивается при наличии опухолей гипофиза и надпочечников (синдром Иценко-Кушинга).

Обследование и лечение пациентов с болезнью Иценко-Кушинга проводит гинеколог-эндокринолог. Диагноз устанавливается на основании лабораторных методов исследования, определяющих повышение уровня АКТГ и кортикостероидов в моче и крови, а также при помощи специальных проб с дексаметазоном.

Данные компьютерной (КТ) или магнитно-резонансной (МРТ) томографий позволяют исключить опухоли гипофиза и надпочечников.

Диэнцефальный синдром после родов (синдром Симмондса-Шиена )

Диэнцефальный синдром может сформироваться после родов. Беременность сопровождается увеличением размеров и массы гипофиза – главного «подчиненного» гипоталамуса. Если у женщины в послеродовом периоде имеет место кровотечение, то в качестве ответной реакции возникает спазм сосудов, в том числе, в головном мозге. Это способствует развитию ишемии, а впоследствии и некроза увеличенного гипофиза, а также ядер гипоталамуса. Данное состояние называется синдромом Симмондса-Шиена (гипоталамо-гипофизарная кахексия, послеродовый гипопитуитаризм).

При этом может нарушаться работа всех эндокринных желез: щитовидной, яичников, надпочечников. Характерными признаками заболевания являются: отсутствие лактации после родов и резкое снижение веса. Также могут отмечаться жалобы на головную боль, быструю утомляемость, понижение артериального давления, симптомы анемии (сухость кожи, ломкость волос, боли в области сердца и пр.).

Вследствие нарушения функции яичников у женщины исчезают менструации, атрофируются половые органы. Гипотиреоз проявляется выпадением волос, отеками, нарушениями работы желудочно-кишечного тракта, ухудшением памяти.

Диагностика синдрома Симмондса-Шиена основана на изучении гормонального профиля, при котором выявляется снижение в крови уровня следующих гормонов: соматотропного (СТТ), тиреотропного (ТТГ), фолликулостимулирующего (ФСГ), лютеинизирующего (ЛГ) и адренокортикотропного (АКТГ).

С целью оценки функционального состояния гипоталамо-гипофизарно-надпочечниковой системы проводят специальные пробы с АКТГ и нагрузкой метапироном.

По данным КТ и МРТ при синдроме Симмондса-Шиена можно обнаружить структурные изменения турецкого седла – кости основания черепа, на которой лежит гипофиз.

Лечение диэнцефального синдрома

Немедикаментозное лечение диэнцефального синдрома в зависимости от причин, вызвавших его развитие, заключается в проведении следующих мероприятий:

  • устранении последствий черепно-мозговой или родовой травм;
  • терапии нейроинфекции;
  • хирургическом удалении опухолей;
  • компенсации болезней внутренних органов;
  • назначении диеты с достаточным количеством белков, жиров и витаминов;
  • увеличении массы тела;
  • санации всех очагов хронической инфекции;
  • устранении интоксикаций и стрессов;
  • организации режима отдыха и сна.

Медикаментозная терапия при диэнцефальном синдроме проводится с целью нормализации обменных процессов и восстановления регулярного менструального цикла.

Loading...Loading...