Создание искусственных органов и тканей. Искусственные органы: человек умеет все. АО «Медицинский университет Астана»

Искусственные органы человека

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы – вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

«Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40-50 раз в минуту. Обычный поршень для этого не подходит: в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь и в других подобных устройствах используют мехи из гофрированного металла или пластика – сильфоны. Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

«Аппарат искусственного кровообращения» устроен аналогично. Его шланги подключаются к кровеносным сосудам хирургическим путем.

Первая попытка замещения функции сердца механическим аналогом была сделана еще в 1812 году. Однако до сих пор среди множества изготовленных аппаратов нет полностью удовлетворяющего врачей.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия.

Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается – и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца.

Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Российский конструктор Александр Дробышев, несмотря на все трудности, продолжает создавать новые современные конструкции «Поиска», которые будут значительно дешевле зарубежных образцов.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» «Новакор» стоит 400 тысяч долларов. С ней можно целый год дома ждать операции.

В кейсе-чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке – наружный сервис: компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома с больным – блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного – следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Аппараты «Искусственная почка» работают уже довольно давно и успешно применяются медиками.

Еще в 1837 году, изучая процессы движения растворов через полупроницаемые мембраны, Т. Грехен впервые применил и ввел в употребление термин «диализ» (от греческого dialisis – отделение). Но лишь в 1912 году на основе этого метода в США был сконструирован аппарат, с помощью которого его авторы проводили в эксперименте удаление салицилатов из крови животных. В аппарате, названном ими «искусственная почка», в качестве полупроницаемой мембраны были использованы трубочки из коллодия, по которым текла кровь животного, а снаружи они омывались изотоническим раствором хлорида натрия. Впрочем, коллодий, примененный Дж. Абелем, оказался довольно хрупким материалом и в дальнейшем другие авторы для диализа пробовали иные материалы, такие как кишечник птиц, плавательный пузырь рыб, брюшину телят, тростник, бумагу.

Для предотвращения свертывания крови использовали гирудин – полипептид, содержащийся в секрете слюнных желез медицинской пиявки. Эти два открытия и явились прототипом всех последующих разработок в области внепочечного очищения.

Каковы бы ни были усовершенствования в этой области, принцип пока остается одним и тем же. В любом варианте «искусственная почка» включает в себя следующие элементы: полупроницаемая мембрана, с одной стороны которой течет кровь, а с другой стороны – солевой раствор. Для предотвращения свертывания крови используют антикоагулянты – лекарственные вещества, уменьшающие свертываемость крови. В этом случае происходит выравнивание концентраций низкомолекулярных соединений ионов, мочевины, креатинина, глюкозы, других веществ с малой молекулярной массой. При увеличении пористости мембраны возникает перемещение веществ с большей молекулярной массой. Если же к этому процессу добавить избыточное гидростатическое давление со стороны крови или отрицательное давление со стороны омывающего раствора, то процесс переноса будет сопровождаться и перемещением воды – конвекционный массообмен. Для переноса воды можно воспользоваться и осмотическим давлением, добавляя в диализат осмотически активные вещества. Чаще всего с этой целью использовали глюкозу, реже фруктозу и другие сахара и еще реже продукты иного химического происхождения. При этом, вводя глюкозу в больших количествах, можно получить действительно выраженный дегидратационный эффект, однако повышение концентрации глюкозы в диализате выше некоторых значений не рекомендуется из-за возможности развития осложнений.

Наконец, можно вообще отказаться от омывающего мембрану раствора (диализата) и получить выход через мембрану жидкой части крови: вода и вещества с молекулярной массой широкого диапазона.

В 1925 году Дж. Хаас провел первый диализ у человека, а в 1928 году он же использовал гепарин, поскольку длительное применение гирудина было связано с токсическими эффектами, да и само его воздействие на свертывание крови было нестабильным. Впервые же гепарин был применен для диализа в 1926 году в эксперименте Х. Нехельсом и Р. Лимом.

Поскольку перечисленные выше материалы оказывались малопригодными в качестве основы для создания полупроницаемых мембран, продолжался поиск других материалов, и в 1938 году впервые для гемодиализа был применен целлофан, который в последующие годы длительное время оставался основным сырьем для производства полупроницаемых мембран.

Первый же аппарат «искусственная почка», пригодный для широкого клинического применения, был создан в 1943 году В. Колффом и Х. Берком. Затем эти аппараты усовершенствовались. При этом развитие технической мысли в этой области вначале касалось в большей степени именно модификации диализаторов и лишь в последние годы стало затрагивать в значительной мере собственно аппараты.

В результате появилось два основных типа диализатора, так называемых катушечных, где использовали трубки из целлофана, и плоскопараллельных, в которых применялись плоские мембраны.

В 1960 году Ф. Киил сконструировал весьма удачный вариант плоскопараллельного диализатора с пластинами из полипропилена, и в течение ряда лет этот тип диализатора и его модификации распространились по всему миру, заняв ведущее место среди всех других видов диализаторов.

Затем процесс создания более эффективных гемодиализаторов и упрощения техники гемодиализа развивался в двух основных направлениях: конструирование самого диализатора, причем доминирующее положение со временем заняли диализаторы однократного применения, и использование в качестве полупроницаемой мембраны новых материалов.

Диализатор – сердце «искусственной почки», и поэтому основные усилия химиков и инженеров были всегда направлены на совершенствование именно этого звена в сложной системе аппарата в целом. Однако техническая мысль не оставляла без внимания и аппарат как таковой.

В 1960-х годах возникла идея применения так называемых центральных систем, то есть аппаратов «искусственная почка», в которых диализат готовили из концентрата – смеси солей, концентрация которых в 30-34 раза превышала концентрацию их в крови больного.

Комбинация диализа «на слив» и техники рециркуляции была использована в ряде аппаратов «искусственная почка», например американской фирмой «Travenol». В этом случае около 8 литров диализата с большой скоростью циркулировало в отдельной емкости, в которую был помещен диализатор и в которую каждую минуту добавляли по 250 миллилитров свежего раствора и столько же выбрасывали в канализацию.

На первых порах для гемодиализа использовали простую водопроводную воду, потом из-за ее загрязненности, в частности микроорганизмами, пробовали применять дистиллированную воду, но это оказалось очень дорогим и малопроизводительным делом. Радикально вопрос был решен после создания специальных систем по подготовке водопроводной воды, куда входят фильтры для ее очистки от механических загрязнений, железа и его окислов, кремния и других элементов, ионообменные смолы для устранения жесткости воды и установки так называемого «обратного» осмоса.

Много усилий было затрачено на совершенствование мониторных систем аппаратов «искусственная почка». Так, кроме постоянного слежения за температурой диализата, стали постоянно наблюдать с помощью специальных датчиков и за химическим составом диализата, ориентируясь на общую электропроводность диализата, которая меняется при снижении концентрации солей и повышается при увеличении таковой.

После этого в аппаратах «искусственная почка» стали применять ионо-селективные проточные датчики, которые постоянно следили бы за ионной концентрацией. Компьютер же позволил управлять процессом, вводя из дополнительных емкостей недостающие элементы, или менять их соотношение, используя принцип обратной связи.

Величина ультрафильтрации в ходе диализа зависит не только от качества мембраны, во всех случаях решающим фактором является трансмембранное давление, поэтому в мониторах стали широко применять датчики давления: степень разрежения по диализату, величина давления на входе и выходе диализатора. Современная техника, использующая компьютеры, позволяет программировать процесс ультрафильтрации.

Выходя из диализатора, кровь попадает в вену больного через воздушную ловушку, что позволяет судить на глаз о приблизительной величине кровотока, склонности крови к свертыванию. Для предупреждения воздушной эмболии эти ловушки снабжают воздуховодами, с помощью которых регулируют в них уровень крови. В настоящее время во многих аппаратах на воздушные ловушки надевают ультразвуковые или фотоэлектрические детекторы, которые автоматически перекрывают венозную магистраль при падении в ловушке уровня крови ниже заданного.

Недавно ученые создали приборы, помогающие людям, потерявшим зрение – полностью или частично.

Чудо-очки, например, разработаны в научно-внедренческой производственной фирме «Реабилитация» на основе технологий, использовавшихся ранее лишь в военном деле. Подобно ночному прицелу, прибор действует по принципу инфракрасной локации. Черно-матовые стекла очков на самом деле представляют собой пластины из оргстекла, между которыми заключено миниатюрное локационное устройство. Весь локатор вместе с очковой оправой весит порядка 50 граммов – примерно столько же, сколько и обыкновенные очки. И подбирают их, как и очки для зрячих, строго индивидуально, чтобы было и удобно, и красиво. «Линзы» не только выполняют свои прямые функции, но и прикрывают дефекты глаз. Из двух десятков вариантов каждый может выбрать для себя наиболее подходящий.

Пользоваться очками совсем не трудно: надо надеть их и включить питание. Источником энергии для них служит плоский аккумулятор размерами с сигаретную пачку. Здесь же, в блоке, помещается и генератор.

Излучаемые им сигналы, натолкнувшись на преграду, возвращаются назад и улавливаются «линзами-приемниками». Принятые импульсы усиливаются, сравниваются с пороговым сигналом, и, если есть преграда, тотчас звучит зуммер – тем громче, чем ближе подошел к ней человек. Дальность действия прибора можно регулировать, используя один из двух диапазонов.

Работы по созданию электронной сетчатки успешно ведутся американскими специалистами НАСА и Главного центра при университете Джона Гопкинса.

На первых порах они постарались помочь людям, у которых еще сохранились кое-какие остатки зрения. «Для них созданы телеочки, – пишут в журнале «Юный техник» С. Григорьев и Е. Рогов, – где вместо линз установлены миниатюрные телеэкраны. Столь же миниатюрные видеокамеры, расположенные на оправе, пересылают в изображение все, что попадает в поле зрения обычного человека. Однако для слабовидящего картина еще и дешифруется с помощью встроенного компьютера. Такой прибор особых чудес не создает и слепых зрячими не делает, считают специалисты, но позволит максимально использовать еще оставшиеся у человека зрительные способности, облегчит ориентацию.

Например, если у человека осталась хотя бы часть сетчатки, компьютер «расщепит» изображение таким образом, чтобы человек мог видеть окружающее хотя бы с помощью сохранившихся периферийных участков.

По оценкам разработчиков, подобные системы помогут примерно 2,5 миллионов людей, страдающих дефектами зрения. Ну а как быть с теми, у кого сетчатка практически полностью утрачена? Для них ученые глазного центра, работающего при университете Дюка (штат Северная Каролина), осваивают операции по вживлению электронной сетчатки. Под кожу имплантируются специальные электроды, которые, будучи соединены с нервами, передают изображение в мозг. Слепой видит картину, состоящую из отдельных светящихся точек, очень похожую на демонстрационное табло, что устанавливают на стадионах, вокзалах и в аэропортах. Изображение на «табло» опять-таки создают миниатюрные телекамеры, укрепленные на очковой оправе».

И, наконец, последнее слово науки на сегодняшний день – попытка методами современной микротехнологии создать новые чувствительные центры на поврежденной сетчатке. Такими операциями занимаются сейчас в Северной Каролине профессор Рост Пропет и его коллеги. Совместно со специалистами НАСА они создали первые образцы субэлектронной сетчатки, которая непосредственно имплантируется в глаз.

«Наши пациенты, конечно, никогда не смогут любоваться полотнами Рембрандта, – комментирует профессор. – Однако различать, где дверь, а где окно, дорожные знаки и вывески они все-таки будут…»

Из книги Большая Советская Энциклопедия (ВО) автора БСЭ

Из книги Большая Советская Энциклопедия (ЗУ) автора БСЭ

Из книги Большая Советская Энциклопедия (ИС) автора БСЭ

Из книги Большая Советская Энциклопедия (СП) автора БСЭ

Из книги Промальп в ответах на вопросы автора Гофштейн Александр Ильич

Из книги Тайны драгоценных камней автора Старцев Руслан Владимирович

Из книги Странности нашего тела – 2 автора Джуан Стивен

3.9. Искусственные точки закрепления веревок (искусственные точки опоры - ИТО) Если нет возможности надежно закрепить несущую и (или) страховочную веревку (точки закрепления отсутствуют вовсе или их надежность сомнительна), а использование локальных петель по каким-либо

Из книги Правоведение: Шпаргалка автора Автор неизвестен

Искусственные рубины Уже было сказано о том, что давно люди пытались получать драгоценные камни сами. Но только с получением обширных знаний по физике и химии это в конце концов оказалось возможно.Еще в 1837 году некий Марк Годен - французский химик - поставил и успешно

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Существуют ли искусственные почки? Можно сказать, что подобие искусственных почек существует с 1944 г. Функции почек выполняет аппарат для диализа, но его размещают вне тела. Диализ можно проводить, используя стационарную больничную установку (обычно два раза в неделю),

Из книги Осмысление процессов автора Тевосян Михаил

Из книги Макияж [Краткая энциклопедия] автора Колпакова Анастасия Витальевна

5.5. Анализаторы. Органы чувств, их роль в организме. Строение и функции. Высшая нервная деятельность. Сон, его значение. Сознание, память, эмоции, речь, мышление. Особенности психики человека 5.5.1 Органы чувств (анализаторы). Строение и функции органов зрения и слуха Основные

Из книги Катастрофы тела [Влияние звезд, деформация черепа, великаны, карлики, толстяки, волосатики, уродцы...] автора Кудряшов Виктор Евгеньевич

6.5. Происхождение человека. Человек как вид, его место в системе органического мира. Гипотезы происхождения человека. Движущие силы и этапы эволюции человека. Человеческие расы, их генетическое родство. Биосоциальная природа человека. Социальная и природная среда,

Из книги Универсальный энциклопедический справочник автора Исаева Е. Л.

Из книги автора

Искусственные ресницы Современные технологии позволяют сделать взгляд неотразимым. Этого можно достичь наращиванием ресниц. Искусственные ресницы стали актуальными в последнее время, несмотря на то, что процедура довольно дорогая и трудоемкая.Существует несколько

Из книги автора

Искусственные карлики Первые попытки искусственного создания карликов имели место на закате Римской Империи. Когда они оказались удачными, тут же возник целый промысел, специализирующийся на производстве и продаже искусственных карликов. Среди римского плебса агенты

Из книги автора

Внутренние органы человека Дыхательная

В прошлом году создали эмбрион - помесь свиньи и человека, в этом году - поместили человеческие клетки в эмбрион овцы . Стволовые клетки перепрограммируют в разные другие, делают из кожи сетчатку глаза, мышцы и вообще что угодно, выращивают модели органов на крохотных чипах - зачем все это нужно? Какую пользу такие исследования могут принести обычному пациенту?

Будущее трансплантации

Польза на самом деле огромная. Никто из нас не застрахован от болезней и травм, результатом которых может стать отказ того или иного органа. Люди не саламандры и не черви и даже хвост-то себе отрастить не способны, не говоря уже о новой голове.

Рыбки данио-рерио могут восстановиться после травм сердца, а мы - не они, наша регенерация, увы, заставляет желать лучшего, поэтому для сотен тысяч человек единственный способ сейчас получить работающие сердце, легкие или печень - это пересадка органа от донора.

Реципиентов - сотни тысяч. Доноров - намного меньше, подходящих конкретному человеку - критически мало. Если в случае с почкой донор может быть живым (и, скажем, родственником, таких случаев полно), то с сердцем, например, такого уже не получится. Сотни человек ежедневно умирают только потому, что нужного донора не успели найти. Именно поэтому исследования в области выращивания искусственных органов критически важны.

При чем тут эмбрионы животных?

До выращивания новых органов прямо внутри пациентов науке еще очень и очень далеко, а вот модификация эмбрионов животных уже доступна. Первые живые химеры (так называют организмы, в которых сосуществует генетический материал из разных зигот, а зигота - это то, что получается после встречи половых клеток) показали, что в теле животного вполне могут расти человеческие клетки.

У эмбрионов свиней начали формироваться органы, в том числе сердце и печень. Получается, что при точной настройке вырастить человеческий орган внутри животного реально не только теоретически, но и практически, а теперь выяснилось, что и с овцами такое тоже может получиться. Таким образом, искусственные органы - это вопрос времени.

Правда, довольно отдаленного, потому что пока еще специалисты не разобрались, как дирижировать этим клеточным оркестром, да и этические вопросы, возникающие в процессе таких модификаций, довольно сложны. Специалистам приходится думать не только собственно об органах, но и о том, как удержаться на грани и не сделать свинью или овцу слишком человеком.

Разумеется, это не будет гибрид типа Минотавра (такого просто никто не будет выращивать, дураков нет, а если есть - им быстро настучат по рогам), но сейчас концентрация человеческих клеток в эмбрионах (которых, разумеется, после исследования уничтожили как раз во избежание эксцессов) - одна на 10 тысяч, а надо - 1 на 100 или, может быть, даже больше. В общем, непонятно пока, как настроить тонкую механику, но уже ясно, что это в принципе возможно.

Нынешние биотехнологии позволяют очень многое. Известно, например, что одни специалисты создали потенциально полезную для искусственных органов систему сосудов, «обесклетив» лист шпината . Все растительные клетки вычистили, а оставшуюся основу населили человеческими.

Другие исследователи сделали материал, из которого в будущем возможно будет делать, например, заплатки для сердца после инфаркта: искусственная ткань и сокращаться может, и электричество проводит. Здесь уже, наверное, ничего объяснять не надо - и так понятно, зачем нужна такая заплатка.

Впрочем, не единой трансплантацией будет жив человек. У искусственных органов или даже их мини-версий - полностью функциональных уменьшенных копий - есть и другая важнейшая функция. На них можно проверять действие новых препаратов и моделировать процесс течения заболеваний, не привлекая к исследованиям людей.

Работа в этом направлении ведется колоссальная - например, из крысиных сердец уже умеют делать уменьшенные модели человеческих, очищая их от животных клеток и заселяя, соответственно, клетками Homo sapiens , создавали мини-желудки, мини-легкие, мини-почки и даже модель женской репродуктивной системы, которую после определенной доработки потенциально можно использовать для персонифицированной медицины - заселять ее клетками конкретной пациентки и смотреть, как будут у нее работать лекарства.

Все это звучит довольно футуристично, но вспомните - всего лет 30 назад нельзя было и помыслить о смартфонах и мощных компьютерах, а сейчас? В начале прошлого века не было антибиотиков - сейчас их множество видов. Да что там говорить, люди уже и на пересадку головы замахнулись - правда, пока безуспешно, но раньше это даже представить нельзя было. Так что будущее уже наступает - сегодня.

Ксения Якушина

Фото istockphoto.com

21/06/2017

Искусственное выращивание органов может спасти миллионы человеческих жизней. Регулярно поступающие новости из сферы регенеративной медицины звучат обнадеживающе и многообещающе. Кажется, что уже не за горами тот день, когда биоинженерные ткани и органы будут так же доступны, как запчасти к автомобилям

Успехи регенеративной медицины

Методы терапии с использованием клеточных технологий уже многие годы успешно применяют во врачебной практике. Созданы и успешно используются искусственные органы и ткани, полученные с помощью методов клеточной терапии и тканевой инженерии. К практическим достижениям в области регенеративной биомедицины относится выращивание хрящевых тканей, мочевого пузыря, уретры, сердечных клапанов, трахеи, роговицы и кожи. Удалось вырастить искусственный зуб, пока только в организме крысы, но стоматологам стоит задуматься о кардинально новых подходах. Была разработана технология восстановления гортани после операции по ее удалению и уже выполнено много таких операций. Известны случаи успешной имплантации трахеи, выращенной на донорской матрице из клеток пациента. В течение многих лет осуществляют трансплантацию искусственной роговицы.

Уже налажено серийное производство биопринтеров, которые слой за слоем печатают живые ткани и органы заданной трехмерной формы

Самыми простыми для выращивания оказались хрящевая ткань и кожа. В деле выращивания костей и хрящей на матрицах достигнут большой прогресс. Следующий уровень по сложности занимают кровеносные сосуды. На третьем уровне оказались мочевой пузырь и матка. Но эта ступень уже пройдена в 2000–2005 гг., после успешного завершения ряда операций по трансплантации искусственного мочевого пузыря и уретры. Тканевые имплантаты вагины, выращенные в лаборатории из мышечных и эпителиальных клеток пациенток, не только успешно прижились, сформировав нервы и сосуды, но и нормально функционируют уже около 10 лет.

Самыми сложными органами для биомедицины остаются сердце и почки, которые имеют сложную иннервацию и систему кровеносных сосудов. До выращивания целой искусственной печени еще далеко, однако фрагменты ткани печени человека уже получены с помощью метода выращивания на матрице из биоразлагаемых полимеров. И хотя успехи очевидны, замена таких жизненно важных органов, как сердце или печень, их выращенными аналогами - все-таки дело будущего, хотя, возможно, и не очень далекого.

Матрицы для органов

Нетканые губчатые матрицы для органов делают из биоразрушаемых полимеров молочной и гликолевой кислот, полилактона и многих других веществ. Большие перспективы и у гелеобразных матриц, в которые, кроме питательных веществ, можно вводить факторы роста и другие индукторы дифференцировки клеток в виде трехмерной мозаики, соответствующей структуре будущего органа. А когда этот орган сформируется, гель бесследно рассасывается. Для создания каркаса также используют полидиметилсилоксан, который можно заселить клетками любой ткани.

Базовая технология выращивания органов, или тканевая инженерия, заключается в использовании эмбриональных стволовых клеток для получения специализированных тканей

Следующий шаг - это выстилание внутренней поверхности полимера незрелыми клетками, которые затем образуют стенки кровеносных сосудов. Далее другие клетки желаемой ткани по мере размножения будут замещать биоразлагаемую матрицу. Перспективным считается использование донорского каркаса, определяющего форму и структуру органа. В экспериментах сердце крысы помещали в специальный раствор, с помощью которого удаляли клетки мышечной сердечной ткани, оставив другие ткани нетронутыми. Очищенный каркас засеивали новыми клетками сердечной мышцы и помещали в среду, имитирующую условия в организме. Всего через четыре дня клетки размножились настолько, что начались сокращения новой ткани, а через восемь дней реконструированное сердце уже могло качать кровь. С помощью этого же метода на донорском каркасе была выращена новая печень, которую затем пересадили в организм крысы.

Базовая технология выращивания органов

Пожалуй, нет ни одной биологической ткани, к попыткам синтезирования которой не приступила бы современная наука. Базовая технология выращивания органов, или тканевая инженерия, заключается в использовании эмбриональных стволовых клеток для получения специализированных тканей. Эти клетки затем помещают внутрь структуры соединительной межклеточной ткани, состоящей преимущественно из белка коллагена.

Матрицу из коллагена можно получить путем очистки от клеток донорской биологической ткани или создать ее искусственным путем из биоразрушаемых полимеров либо специальной керамики, если речь идет о костях. В матрицу помимо клеток вводят питательные вещества и факторы роста, после чего клетки формируют целый орган или его фрагмент. В биореакторе удалось вырастить мышечную ткань с готовой кровеносной системой.

Самыми сложными органами для биомедицины остаются сердце и почки, которые имеют сложную иннервацию и систему кровеносных сосудов

Эмбриональные стволовые клетки человека индуцировали к дифференцировке в миобласты, фибробласты и клетки эндотелия. Прорастая вдоль микротрубочек матрицы, эндотелиальные клетки сформировали русла капилляров, вошли в контакт с фибробластами и заставили их переродиться в гладкомышечную ткань. Фибробласты выделили фактор роста сосудистого эндотелия, который способствовал дальнейшему развитию кровеносных сосудов. При пересадке мышам и крысам такие мышцы приживались намного лучше, чем участки ткани, состоящие из одних мышечных волокон.

Органоиды

Используя трехмерные клеточные культуры, удалось создать простую, но вполне функциональную печень человека. В совместной культуре эндотелиальных и мезенхимальных клеток при достижении определенного соотношения начинается их самоорганизация и образуются трехмерные шарообразные структуры, представляющие собой зачаток печени. Через 48 ч после трансплантации этих фрагментов в организм мышей устанавливаются связи с кровеносными сосудами и внедренные части способны выполнять характерные для печени функции. Проведены успешные эксперименты по имплантации крысе легкого, выращенного на очищенной от клеток донорской матрице.

Воздействуя на сигнальные пути индуцированных плюрипотентных стволовых клеток, удалось получить органоиды легких человека, состоящие из эпителиальных и мезенхимальных компартментов со структурными особенностями, характерными для легочных тканей. Биоинженерные зародыши подчелюстных слюнных желез, сконструированные in vitro , после трансплантации способны развиваться в зрелую железу путем формирования гроздьевидных отростков с мышечным эпителием и иннервацией.

Разработаны 3D-органоиды глазного яблока и сетчатки глаза с фоторецепторными клетками: палочками и колбочками. Из недифференцированных эмбриональных клеток лягушки вырастили глазное яблоко и вживили его в глазную полость головастика. Через неделю после операции симптомы отторжения отсутствовали, и анализ показал, что новый глаз полностью интегрировался в нервную систему и способен передавать нервные импульсы.

А в 2000 г. опубликованы данные о создании глазных яблок, выращенных из недифференцированных эмбриональных клеток. Выращивание нервной ткани наиболее сложно из-за многообразия типов составляющих ее клеток и их сложной пространственной организации. Однако на сегодня существует успешный опыт выращивания аденогипофиза мыши из скопления стволовых клеток. Создана трехмерная культура органоидов клеток головного мозга, полученных из плюрипотентных стволовых клеток.

Напечатанные органы

Уже налажено серийное производство биопринтеров, которые слой за слоем печатают живые ткани и органы заданной трехмерной формы. Принтер способен с высокой скоростью наносить живые клетки на любую подходящую подложку, в качестве которой используют термообратимый гель. При температуре ниже 20 °С он представляет собой жидкость, а при нагреве выше 32 °С затвердевает. Причем печать осуществляется «из материала заказчика», то есть из растворов живых клеточных культур, выращенных из клеток пациента. Клетки, напыляемые принтером, через некоторое время сами срастаются. Тончайшие слои геля придают конструкции прочность, а затем гель можно легко удалить с помощью воды. Однако чтобы таким способом можно было сформировать функционирующий орган, содержащий клетки нескольких типов, необходимо преодолеть ряд сложностей. Механизм контроля, за счет которого делящиеся клетки формируют правильные структуры, еще не понятен до конца. Однако представляется, что несмотря на сложность этих задач, они все же решаемы и у нас есть все основания верить в стремительное развитие медицины нового типа.

Биобезопасность применения плюрипотентных клеток

От регенеративной медицины ждут очень многого и вместе с тем развитие этого направления порождает множество морально-этических, медицинских и нормативно-правовых вопросов. Очень важной проблемой является биобезопасность применения плюрипотентных стволовых клеток. Уже научились перепрограммировать клетки крови и кожи c помощью факторов транскрипции в индуцированные стволовые плюрипотентные клетки. Полученные культуры стволовых клеток пациента в дальнейшем могут развиваться в нейроны, ткани кожных покровов, клетки крови и печени. Следует помнить, что во взрослом здоровом организме плюрипотентных клеток нет, но они могут спонтанно возникать при саркоме и тератокарциноме. Соответственно, если ввести в организм плюрипотентные клетки или клетки с индуцированной плюрипотентностью, то они могут спровоцировать развитие злокачественных опухолей. Поэтому необходима полная уверенность в том, что в трансплантируемом пациенту биоматериале таких клеток не содержится. Сейчас разрабатываются технологии, позволяющие прямо получить клетки тканей определенного типа, минуя состояние плюрипотентности.

В XXI в. с развитием новых технологий медицина обязана перейти на качественно новый уровень, который позволит своевременно «отремонтировать» организм, пораженный тяжелой болезнью или возрастными изменениями. Хочется верить, что совсем скоро выращивать органы прямо в операционной из клеток пациента будет так же просто, как цветы в оранжереях. Надежду подкрепляет то, что технологии выращивания тканей уже работают в медицине и спасают жизни людей.

Уже сегодня технологии выращивания новых органов широко используются в медицине и позволяют осваивать новые методы изучения иммунной системы и различных заболеваний, а также снижают потребность в трансплантатах. Пациенты, которым сделали пересадку каких-либо органов, нуждаются в большом количестве токсических препаратов для того, чтобы подавлять свою иммунную систему; иначе их организм может отвергнуть пересаженный орган. Однако, благодаря развитию тканевой инженерии, пересадка органов может остаться в прошлом. Используя клетки самих пациентов в качестве материала для выращивания в лаборатории новых видов ткани, ученые открывают все новые технологии создания человеческих органов.

Выращивание органов -- перспективная биоинженерная технология, целью которой является создание различных полноценных жизнеспособных биологических органов для человека. Пока технология не применяется на людях.

Создание органов стало возможным чуть более 10 лет назад благодаря развитию биоинженерных технологий. Для выращивания используют стволовые клетки, взятые у пациента. Разработанная недавно технология ИПК (индуцированные плюрипотентные клетки) позволяет перепрограммировать стволовые клетки взрослого человека так, чтобы из них мог получиться любой орган.

Выращивание органов или тканей человека может быть, как внутренним, так и наружным (в пробирках).

Самый известный ученый в этой области - Энтони Атала, признанный Врачом года-2011, глава лаборатории в Институте регенеративной медицины Вейк Сити (США). Именно под его руководством 12 лет назад был создан первый искусственный орган - мочевой пузырь. Вначале Атала с коллегами создали искусственную матрицу из биосовместимых материалов. Затем взяли у пациента здоровые стволовые клетки мочевого пузыря и перенесли на каркас: одни изнутри, другие снаружи. Через 6-8 недель орган был готов к пересадке.

«Меня учили, что нервные клетки не восстанавливаются, - вспоминал позже Атала. - Как же мы были поражены, когда наблюдали, как пересаженный нами мочевой пузырь покрывается сеткой нервных клеток! Это значило, что он будет, как и должно, общаться с мозгом и функционировать как у всех здоровых людей. Удивительно, как много истин, которые еще 20 лет назад казались незыблемыми, опровергнуто, и теперь нам открыты ворота в будущее».

Для создания матрикса применяют донорские или искусственные ткани, даже углеродные нанотрубки и нити ДНК. Например, кожа, выращенная на каркасе из углеродных нанотрубок, в десятки раз прочнее стали - неуязвима, как у супермена. Только непонятно, как с таким человеком потом работать, например, хирургу. Кожу на каркасе из паучьего шелка (тоже прочнее стали) уже вырастили. Правда, человеку пока не пересаживали.

А самая, пожалуй, передовая технология - печатание органов. Придумал ее все тот же Атала. Метод годится для сплошных органов и особенно хорош для трубчатых. Для первых экспериментов использовали обычный струйный принтер. Позже, конечно, изобрели специальный.

Принцип прост, как все гениальное. Вместо чернил разного цвета картриджи заправлены суспензиями разных типов стволовых клеток. Компьютер вычисляет структуру органа и задает режим печати. Он, конечно, сложнее обычной печати на бумаге, в нем много-много слоев. За счет них и создается объем. Потом все это должно срастись. Уже удалось «напечатать» кровеносные сосуды, в том числе сложно ветвящиеся.

Кожа и хрящи. Их вырастить проще всего: достаточно было научиться размножать кожные и хрящевые клетки вне организма. Хрящи пересаживают уже около 16 лет, это достаточно распространенная операция.

Кровеносные сосуды. Вырастить их несколько сложнее, чем кожу. Ведь это трубчатый орган, который состоит из двух типов клеток: одни выстилают внутреннюю поверхность, а другие формируют наружные стенки. Первыми вырастили сосуды японцы под руководством профессора Кадзува Накао из Медицинской школы Киотского университета еще в 2004 году. Чуть позже, в 2006 году, директор Института стволовой клетки университета Миннесоты в Миннеаполисе (США) Катрин Верфэйл продемонстрировала выращенные клетки мышц.

Сердце. Шестнадцати детям в Германии уже пересажены клапаны сердца, выращенные на каркасе от свиного сердца. Двое детей живут с такими клапанами уже 8 лет, и клапаны растут вместе с сердцем! Американо-гонконгская группа ученых обещает начать пересадку «заплаток» для сердца после инфаркта через 5 лет, а английская команда биоинженеров через 10 лет планирует пересаживать целое новенькое сердце.

Почки, печень, поджелудочная железа. Как и сердце, это так называемые сплошные органы. В них самая высокая плотность клеток, поэтому вырастить их труднее всего. Уже решен главный вопрос: как сделать так, чтобы выращенные клетки составили форму печени или почки? Для этого берут матрицу в форме органа, помещают в биореактор и заполняют клетками.

Мочевой пузырь. Самый первый «орган из пробирки». Сегодня операции по выращиванию и пересадке собственного «нового» мочевого пузыря уже сделаны нескольким десяткам американцев.

Верхняя челюсть. Специалисты из Института регенеративной медицины при университете Тампере (Финляндия) умудрились вырастить верхнюю челюсть человека… в его собственной брюшной полости. Они перенесли стволовые клетки на искусственную матрицу из фосфата кальция и зашили мужчине в живот. Через 9 месяцев челюсть извлекли и поставили на место родной, удаленной из-за опухоли.

Сетчатка глаза, нервная ткань мозга. Достигнуты серьезные успехи, но пока о весомых результатах говорить рано.

Новую, значительно усовершенствованную модель трехмерного принтера для печати органов. С его помощью удалось создать искусственную модель кости черепа, ухо и мышцу. Причем все органы, пересаженные лабораторным животным, прижились. Мы решили вспомнить, какие еще органы и ткани ученые уже умеют создавать искусственно, и как это делается сегодня.

Практически любой орган человека состоит из трех тесно связанных структур. Во-первых, это соединительнотканный внеклеточный матрикс — разветвленная сеть коллагеновых волокон, которая придает органу форму и плотность, а также служит каркасом для клеток. Во-вторых, это клетки, благодаря которым орган выполняет свои биологические функции (во многих органах присутствуют несколько типов клеток). В-третьих, это сосудистая сеть, которая приносит артериальную кровь, насыщает ткани кислородом и питательными веществами, забирая у них углекислый газ и продукты обмена. Создание каждой из этих структур представляет отдельную сложную задачу тканевой инженерии.

Придать форму

Для получения внеклеточного матрикса используют два принципиально разных подхода. Можно создавать его с нуля — брать подходящий материал и, придумывая инженерные ухищрения, придавать ему нужную структуру. Альтернативный путь — взять «готовый» орган животного или мертвого донора и очистить его от всего лишнего, оставив только чистый каркас, свободный от клеток и не вызывающий реакции отторжения. Каждый из этих методов имеет достоинства и недостатки.

Искусственный матрикс синтезируют из синтетических и природных веществ. Из первых чаще всего используют полилактид (полимер молочной кислоты), полигликолевую кислоту и поликапролактон. Все они со временем рассасываются в организме без выделения вредных веществ, замещаясь натуральным внеклеточным матриксом. Природные материалы имеют белковую (например, коллаген) или углеводную (например, гиалуроновая кислота) природу. Для придания материалам нужной трехмерной сетчатой структуры в экспериментах и на практике используют множество способов (самосборку нановолокон, текстильные технологии, частичное растворение, вспенивание, электроспиннинг, трехмерная печать и другие). Эти методы не воспроизводят тонкостей микроструктуры органа и не формируют каркас для сосудистой сети. Поэтому они подходят лишь для органов с относительно простым строением — кожи, сосудов, хрящей и т.п.

Наиболее перспективная на данный момент технология получения внеклеточного каркаса сложных органов, например, сердца или почки — это децеллюляризация (очистка от клеток) соответствующего органа мертвого донора или подходящего по размеру животного (чаще всего свиньи). Для этого через сосуды органа медленно, в течение нескольких дней пропускают раствор моющего средства возрастающей концентрации. Когда все клетки удалены, матрикс промывают, и он готов к заселению клетками нового хозяина. Метод хорош и тем, что бесклеточный матрикс состоит из природного материала, который обеспечивает правильное прикрепление и пролиферацию клеток. Основной недостаток этой технологии заключается в том, что она разрушает микрососудистую сеть — капилляры, фактически состоящие из одного слоя эндотелиальных клеток, удаляются при промывании.

Из-за этого до клинического применения пока дошли только созданные таким методом дыхательные пути, а менее совершенное, на первый взгляд, искусственное получение матрикса уже используется в практическом и экспериментальном протезировании.

Заставить работать

Функциональную ткань изначально наращивали на матрикс, погружая его в питательный раствор с клетками и факторами роста. В последнее время все чаще с этой целью используют гидрогели, которые, застывая, обеспечивают равномерное распределение клеток, их лучшее закрепление и диффузию питательных веществ и газов. При использовании децеллюляризированного донорского матрикса раствор клеток и факторов роста пропускают через его сосуды.

Отдельную проблему представляет размножение и выживание клеток — в дифференцированной ткани их возможность делиться и развиваться ограничена длиной теломер («насадок» на концах молекул ДНК, необходимых для ее репликации, которые укорачиваются с каждым делением клетки). Решением этой проблемы может стать использование индуцированных плюрипотентных стволовых клеток, которые по способности пролиферировать и дифференцироваться близки к эмбриональным стволовым клеткам.

Снабдить воздухом и пищей

Создание сосудистой сети, как уже говорилось, представляет собой одну из наиболее сложных задач. Ни один из существующих методов не обеспечивает достаточной плотности и функциональности — капилляры либо протекают, либо их слишком мало для кровоснабжения органа (а чаще и то, и другое). Преодолеть эту проблему различными способами пытаются многие лаборатории мира. Более-менее обнадеживающие предварительные результаты получены при использовании микрожидкостных устройств из биорастворимых материалов, однако полноценную сосудистую сеть целого органа таким способом пока создать не удалось.

Оригинальное решение недавно предложили сотрудники американского Университета Вандербильта. Они получили полимерную сеть с толщиной волокон, близкой к капиллярам, с помощью аппарата для изготовления сладкой ваты. Затем эту сеть заливали гидрогелем с клетками и после его застывания вымывали полимер и пропускали через получившиеся микрососуды питательный раствор. Эта методика пока находится на начальных этапах разработки; полученный гидрогель с живыми клетками и сосудами не имеет внеклеточного матрикса.

Используя бесклеточный матрикс для восстановления кожи и собственные клетки пациента, японские исследователи вырастили на питательной среде и успешно пересадили пациентам слизистую оболочку ротовой полости.

Еще одна ткань, сравнительно простая для создания методом тканевой инженерии — это хрящ. У взрослого человека он практически не кровоснабжается, из-за чего не восстанавливается. Однако крайне низкая потребность зрелого хряща в кислороде и питании существенно облегчает работу с ним — не приходится обеспечивать рост сосудов, поскольку хрящевая ткань получает все необходимое путем диффузии. В 2006 году сотрудники Бристольского университета успешновосстановили поврежденные коленные суставы с помощью искусственных хрящей, выращенных из клеток пациентов на матриксе из гиалуроновой кислоты.

Искусственно выращенная хрящевая ткань применялась еще в одной серии экспериментов на людях, и то с сомнительным результатом. Речь идет о работе хирурга Паоло Маккиарини, выполненной на базе Барселонского университета в Испании, Каролинского института в Швеции и Кубанского медицинского университета в Краснодаре. Он пересаживал трахеи и бронхи, выращенные на децеллюляризованном матриксе мертвых доноров из собственных мезенхимальных стволовых и эпителиальных клеток пациентов. После обвинений в нарушении этики проведения исследований и на основании данных о высокой смертности реципиентов Каролинский институт принял решение уволить Маккиарини.

Также следует упомянуть о работе Стивена Бадилака (Stephen Badylak) из Университета Питтсбурга. Он использовал высушенный порошок из децеллюляризированного матрикса свиного мочевого пузыря, содержащий коллаген и факторы роста, для устранения травматических дефектов тканей. Биосовместимый материал стимулировал стволовые клетки взрослых, благодаря чему удалось восстановить пациентам отрезанную пропеллером авиамоделифалангу пальца , мышцу , практически утраченную в ходе военных действий, и другие поврежденные ткани.

Пожалуй, наибольшего на данный момент успеха в экспериментах на людях добился уже упомянутый Атала. Его коллектив еще в 2000-х годах использовал 3D-принтер для создания матрикса мочевого пузыря.

Полученные каркасы заселили клетками, забранными при биопсии, и вырастили полноценные органы, которые затем успешно пересадили пациентам.

В 2014 году Ясуо Куримото (Yasuo Kurimoto) из Медицинского центра Кобе пересадил женщине с возрастной макулярной дегенерациейсетчатку глаза. Ее вырастили сотрудники института RIKEN во главе с Масаё Такахаси (Masayo Takahashi) из индуцированных плюрипотентных стволовых клеток (за разработку технологии их получения соотечественник ученых Синъя Яманака в 2012 году получил Нобелевскую премию). Путем долгих экспериментов лаборатории RIKEN удалось направить дифференцировку этих клеток в пигментный эпителий сетчатки и получить плоский прямоугольник ткани размером 1,3 на 3,0 миллиметра, пригодный для трансплантации. Операция прошла без осложнений; кровотечения, отторжения и общего ухудшения самочувствия у 70-летней пациентки не наблюдалось. Однако о том, наступило ли восстановление зрения, сообщений не было.

На сегодняшний день этими работами клинические испытания органов, полученных методом тканевой инженерии, практически исчерпываются. Негусто, но известия из лабораторий позволяют в ближайшее время ожидать гораздо более впечатляющих результатов. О них мы расскажем в одном из следующих материалов.



Loading...Loading...