Успехи в лечении наследственных заболеваний. Генетические заболевания. Каковы возможности лечения наследственных заболеваний

Современные методы диагностики позволяют выявлять наследственные болезни на самых ранних стадиях, что является условием их успешного лечения и коррекции, как медикаментозной, так и хирургической. При лечении наследственных болезней, как и любых других, используются три подхода, определяющих три уровня вмешательства (коррекции) в развитие патологического процесса: симптоматический, патогенетический и этиологический.

1. Симптоматическое лечение направлено на облегчение, коррекцию и ликвидацию конкретных симптомов болезни посредством медикаментозной терапии, хирургического лечения, физиотерапевтических, рентгенорадиологических и других методов. Это может осуществляться с помощью обезболивающих препаратов, транквилизаторов, стимуляторов, противосудорожных средств, которые показаны всегда при наличии соответствующих симптомов независимо от порождающей эти симптомы причины.

Хирургические методы нашли широкое применение в лечении врожденных пороков развития, например, при врожденных расщелинах губы и нёба, полидактилии, синдактилии, врожденных сужениях привратника и вывихе бедра, коррекции пороков сердца и других внутренних органов. Хирургическое лечение применяется при меконеальном илеусе (непроходимости кишечника), пневмотораксе и муковисцидозе. Реконструктивная хирургия, кроме того, играет значительную роль при коррекции костно-мышечной системы и гипоспадии.

2. Патогенетическое лечение ближе к этиологическому, однако, в отличие от последнего не устраняет причину болезни. С помощью подобного лечения происходит разрыв цепи патологических процессов, что предотвращает формирование патологического фенотипа. Суть лечения состоит в выведении каких либо продуктов из организма, если ген продуцирует их в избытке, либо в добавлении, замещении недостающих продуктов, если ген не работает. Принцип заместительной терапии наследственных нарушений обмена заключается во введении в организм отсутствующих или недостающих биохимических субстратов.

Ограничение определенных веществ в пище, или диетотерапия, является для многих наследственных нарушений обмена единственным патогенетическим методом лечения и профилактики.

Диетическое ограничение применяется при лечении многих наследственных болезней обмена аминокислот и углеводов - фенилкетонурии, гистидинемии, цистинурии, тирозинемии, целиакии, галактоземии, фруктоземии, непереносимости лактозы и др. Обычно заболевание проявляется либо в первые часы (муковисцидоз, галактоземия) или в первые недели (фенилкетонурия, гаммаглобулинемия и т.д.) жизни ребенка, приводя к умственной отсталости и даже к летальному исходу. Эффективность метода зависит от раннего и точного диагноза, соблюдения гомеостатического принципа лечения, под которым понимается максимальная адаптация диеты к требованиям растущего организма, тщательный клинический и биохимический контроль за проведением диетотерапии. При фенилкетонурии отмечается недостаточность фермента фенилаланин-4-гидроксилазы, превращающего аминокислоту фенилаланин в тирозин. В результате фенилаланин превращается не в тирозин, а в продукты нарушенного обмена - фенилпировиноградную кислоту, фенилэтиламин и т.д., которые, взаимодействуя с клеточными мембранами нейронов в ЦНС, препятствуют проникновению в них триптофана, без которого невозможен синтез многих белков и развиваются необратимые процессы в головном мозге. Заболевание начинает развиваться, как только в организм ребенка с молоком матери начинает поступать фенилаланин. Такой ребенок переводится на искусственное вскармливание специальными белками - гидролизатами. Однако фенилаланин относится к числу незаменимых, т.е. не синтезируемых в организме человека, аминокислот и должен поступать в организм в минимально необходимых количествах. Современные пищевые рационы для детей с фенилкетонурией составляются в точном соответствии с его концентрацией в крови по данным биохимического анализа.

Начало диетотерапии в первые 2-3 месяца жизни обеспечивает нормальное развитие ребенка. Если лечение начать в сроки от трех месяцев до года, то эффективность лечения снижается до 26% , а эффективность лечения, предпринятого в возрасте от одного года до трех лет, составляют менее 15 % . Настораживающими в отношении фенилкетонурии признаками являются плохая прибавка в массе, рвота, отклонения со стороны центральной нервной системы, отягощенный анамнез.

Усиленное выведение продуктов нарушенного обмена. Лечение проводится с помощью некоторых веществ в частности D-пеницилламин, который связывает и ускоряет выведение накопленных в клетке ионов меди (при болезни Вильсона Коновалова). При гемоглобинопатиях необходимо усиленное выведение железа, что осуществляется с помощью десферала. Такое выведение возможно не только посредством определенных химических веществ, но и с помощью таких физико-химических методов, как плазмаферез и гемосорбция. Плазмаферез применяется для освобождения крови от излишка жирных кислот, фитановой кислоты при синдроме Рефсума. Этот метод эффективен также в отношении болезней Фабри и Гоше (лизосомных болезней накопления). Гемосорбция используется для выведения низкой плотности при лечении семейной гиперхолестеринемии.

Метаболическая ингибиция и индукция метаболизма. Ряд лекарственных препаратов (фенобарбитал, левомицетин), а также половые гормоны (эстрогены) являются индукторами метаболизма, а их введение в организм связано с усилением синтеза некоторых ферментов и ускорением процессов, в которых эти ферменты принимают участие. Так, индукцию синтеза фермента глюкуронилтрансферазы можно вызвать введением фенобарбитала больным с синдромом Криглера - Найяра, у которых нарушено образование глюкоронидов билирубина в связи с недостаточностью этого фермента.

Индукцию церулоплазмина, участвующего в метаболизме меди, вызывает введение в организм эстрогенов при болезни Вильсона- Коновалова. Метаболическая ингибиция используется в тех случаях, когда нужно затормозить синтез накапливаемого при наследственной болезни субстрата или его предшественника.

Например, используют аллопуринол, который ингибирует ксантиноксидазу, благодаря чему уменьшается концентрация мочевой кислоты в крови при синдроме Леша - Нихана и подагре. Коррекция обмена на уровне продуктов гена. Примерами возмещения продукта, не вырабатывающегося организмом в связи с дефектом фермента, могут служить введение стероидных гормонов при врожденной гиперплазии надпочечников, тироксина при гипофункции щитовидной железы, гормона роста при гипофизарной карликовости, введение внутриклеточных белков при лечении лизосомных болезней.

Применение инсулина при сахарном диабете позволило резко снизить смертность и инвалидизацию больных. Лечение препаратами йода и тиреоидными гормонами эффективно при наследственных дефектах синтеза тиреоидных гормонов, глюкокортикоидами при нарушениях стероидного обмена. Одно из проявлений, наследственно обусловленных врожденных иммунодефицитных состояний - дисгаммаглобулинемия эффективно лечится введением гамма - глобулина и полиглобулина. Заместительная терапия проводится при ряде наследственных дефектов обмена, патогенез которых связан с накоплением продуктов метаболизма.

3. Этиологическое лечение является наиболее кардинальным и заключается в устранении причины наследственной болезни, т.е. в изменении структуры ДНК во многих клетках. Этой задаче способствует завершение расшифровки генома человека. Именно это направление получило название генной терапии. Для введения ДНК в клетки больного используют различные подходы: химические, физические, биологические, наиболее часто - вирусные. Последние используются не только для лечения наследственных болезней, но и для лечения злокачественных опухолей или хронических вирусных инфекций

Суть метода во введении в клетки-мишени вируса со встроенной в него клонированной ДНК или с ДНК(рекомбинантный вектор). Например, введение в скелетную или сердечную мышцу с ДНК отсутствующего в них белка дистрофина является эффективным при лечении миодистрофий Дюшенна и Беккера. Лечение может контролироваться также при помощи высокоспецифичных моноклональных антител, направленных на конкретный экзон мутантного гена дистрофина.

Наконец, имплантация миобластов - нормальных клеток - предшественников мышечной ткани от отцов больным мальчикам приводит к конвергенции не содержащих дистрофина мышечных волокон в дистрофинсодержащие, что нормализует состояние мышечной ткани.

Аллотрансплантация может рассматриваться как передача нормальной генетической информации больному с наследственным нарушением обмена веществ. Производится пересадка клеток, тканей и органов, содержащих нормальную ДНК, продуцирующую нормальный продукт гена у реципиента.

При мукополисахаридозах производят подкожную подсадку культивированных фибробластов от здорового донора. Эти клетки секретируют нормальные ферменты и исправляют нарушенный обмен мукополисахаридов.

Лечение наследственных болезней

Симптоматическое и патогенетическое - воздействие на симптомы болезни (генетический дефект сохраняется и передается потомству):

1) диетотерапия, обеспечивающая поступление оптимальных количеств веществ в организм, что снимает проявление наиболее тяжких проявлений болезни - например, слабоумия, фенилкетонурии.

2) фармакотерапия (введение в организм недостающего фактора) - периодические инъекции недостающих белков, ферментов, глобулинов резус-фактора, переливание крови, что временно улучшает состояние больных (анемия, гемофилия)

3) хирургические методы - удаление органов, коррекция повреждений или трансплантация (волчья губа, врожденные пороки сердца)

Евгенические мероприятия - компенсация естественных недостатков человека в фенотипе (в том числе и наследственных), т.е. улучшение здоровья человека через фенотип. Заключаются в лечении адаптивной средой: дородовая и послеродовая забота о потомстве, иммунизация, переливание крови, трансплантация органов, пластическая хирургия, диета, лекарственная терапия и т.д. Включает симптоматическое и патогенетическое лечение, но не позволяет полностью избавиться от наследственных дефектов и не уменьшает количество мутантных ДНК в популяции человека.

Этиологическое лечение - воздействие на причину болезни (должно приводить к кардинальному исправлению аномалий). В настоящее время не разработано. Все программы в желаемом направлении фрагментов генетического материала, определяющих наследственные аномалии, исходят из идей генной инженерии (направленные, обратные индуцированные мутации с помощью открытия сложных мутагенов или заменой в клетке «больного» фрагмента хромосомы «здоровым» естественного или искусственного происхождения).

Перспективы лечения наследственных болезней в будущем

Сегодня ученым удалось выяснить только связь между нарушениями хромосомного аппарата, с одной стороны, с различными патологическими изменениями в организме человека - с другой. Касаясь вопроса о завтрашнем дне медицинской генетики, можно сказать, что диагностирование и лечение наследственных болезней будет только развиваться т.к. представляет для клинической медицины большой практический интерес. Выявление причин первоначальных нарушений в системе хромосом, а так же изучение механизма развития хромосомных болезней - также задача ближайшего будущего, причем задача первостепенного значения, так как именно от ее решения во многом зависит разработка эффективных способов профилактики и лечения хромосомных заболеваний.

В последние годы благодаря успешному развитию цитогенетики, биохимии и молекулярной биологии, оказалось возможным выявлять хромосомные и генные мутации у человека не только в постнатальном периоде, но и на разных сроках пренатального развития, т.е. дородовая диагностика наследственной патологии стала реальностью. Пренатальная (дородовая) диагностика включает комплекс мероприятий, направленных на предотвращение появления больного ребенка в семье. Наибольшие успехи достигнуты в дородовой диагностике хромосомных синдромов и моногенньгх заболеваний, в то время как прогнозирование патологии, характеризующейся полигенным наследованием, существенно затруднено. Методы пренатальной диагностики принято делить на инвазивные и неинвазивные.

При применении инвазивных методов производят трансабдоминальный (через брюшную стенку) или трансцервикальный (через влагалище и шейку матки) забор клеток плода на различных сроках беременности и их последующий анализ (цитогенетический, молекулярно-генетический, биохимический и т.д.). Цитогенетические методы исследования позволяют выявить хромосомные аберрации у плода, с помощью биохимических методов определяют активность ферментов или концентрацию некоторых продуктов метаболизма, молекулярно-генетический анализ дает прямой ответ на вопрос о том, есть ли у плода патологическая мутация в исследуемом гене. Применение инвазивных методов дородовой диагностики оказывается наиболее эффективным, так как их результаты позволяют с высокой точностью судить о наличии у плода наследственной патологии. Забор плодного материала для дородовой диатостики может осуществляться на разных сроках беременности под контролем ультразвука.

Возможность лечения наследственных болезней еще недавно вызывала скептические усмешки - настолько укрепилось представление о фатальности наследственной патологии, полной беспомощности врача перед унаследованным дефектом. Однако если это мнение могло быть в определенной мере оправданным до середины 50-х годов, то в настоящее время, после создания ряда специфических и во многих случаях высокоэффективных методов лечения наследственных болезней, подобное заблуждение связано или с недостатком знаний, или, как справедливо отмечают К. С. Ладодо и С. М. Барашнева (1978), с трудностью ранней диагностики этих патологий. Их выявляют на стадии необратимых клинических расстройств, когда медикаментозная терапия оказывается недостаточно эффективной. Между тем современные методы диагностики всех видов наследственных аномалий (хромосомных болезней, моногенных синдромов и мультифакториальных болезней) позволяют определять заболевание на самых ранних стадиях. Успешность вовремя начатого лечения иногда бывает поразительной. Хотя сегодня борьба с наследственной патологией - дело специализированных научных учреждений, думается, что недалеко то время, когда больные после установления диагноза и начала патогенетического лечения будут поступать под наблюдение врачей обычных клиник и поликлиник. Это требует от практического врача знания основных методов лечения наследственной патологии - как уже существующих, так и разрабатываемых.

Среди разнообразных наследственных заболеваний человека особое место занимают наследственные болезни обмена веществ в связи с тем, что генетический дефект проявляется или в период новорожденности (галактоземия, муковисцидоз), или в раннем детстве (фенилкетонурия, галактоземия). Эти болезни занимают одно из первых мест среди причин детской смертности [Вельтищев Ю. Е., 1972]. Весьма оправдано то исключительное внимание, которое уделяется в настоящее время лечению этих заболеваний. В последние годы приблизительно при 300 из более чем 1500 наследственных аномалий обмена установлен конкретный генетический дефект, обусловливающий функциональную неполноценность фермента. Хотя в основе возникающего патологического процесса лежит мутация того или иного гена, участвующего в формировании ферментных систем, патогенетические механизмы этого процесса могут иметь совершенно различное выражение. Во-первых, изменение или отсутствие активности "мутантного" фермента может привести к блокированию определенного звена метаболического процесса, в силу чего в организме произойдет накопление метаболитов или первоначального субстрата, обладающих токсическим действием. Измененная биохимическая реакция может вообще пойти по "неправильному" пути, следствием чего окажется появление в организме вовсе не свойственных ему "чужеродных" соединений. Во-вторых, в силу тех же причин в организме может быть недостаточное образование тех или иных продуктов, что может иметь катастрофические последствия.

Следовательно, патогенетическая терапия наследственных болезней обмена веществ основана на принципиально разных подходах с учетом отдельных звеньев патогенеза.

ЗАМЕСТИТЕЛЬНАЯ ТЕРАПИЯ

Смысл заместительной терапии наследственных ошибок метаболизма прост: введение в организм отсутствующих или недостаточных биохимических субстратов.

Классическим примером заместительной терапии является лечение сахарного диабета. Применение инсулина позволило резко уменьшить не только смертность от этого заболевания, но и инвалидизацию больных. С успехом применяется заместительная терапия и при других эндокринных заболеваниях - препаратами йода и тироидина при наследственных дефектах синтеза тироидных гормонов [Жуковский М. А., 1971], глюкокортикоидами при аномалиях стероидного обмена, хорошо известных клиницистам как адреногенитальный синдром [Таболин В. А., 1973]. Одно из проявлений наследственных иммунодефицитных состояний - дисгаммаглобулинемия - довольно эффективно лечится введением гамма-глобулина и полиглобулина. На этом же принципе основано лечение гемофилии А переливанием донорской крови и введением антигемофильного глобулина.

Высокоэффективным оказалось лечение болезни Паркинсона при помощи L-3-4-дигидроксифенилаланина (L-ДОФА); эта аминокислота служит в организме предшественником медиатора дофамина. Введение больным L-ДОФА или его производных приводит к резкому увеличению концентрации дофамина в синапсах центральной нервной системы, что значительно облегчает симптоматику заболевания, особенно уменьшает мышечную ригидность.

Относительно просто проводится заместительная терапия некоторых наследственных болезней обмена, патогенез которых связан с накоплением продуктов метаболизма. Это переливание лейкоцитной взвеси или плазмы крови здоровых доноров при условии, что в "нормальных" лейкоцитах или плазме имеются ферменты, биотрансформирующие накапливающиеся продукты. Такое лечение дает положительный эффект при мукополисахаридозах, болезни Фабри, миопатиях [Давиденкова Е. Ф., Либерман П. С., 1975]. Однако заместительной терапии наследственных болезней обмена препятствует то, что многие ферментные аномалии локализованы в клетках центральной нервной системы, печени и т. д. Доставка к этим органам-мишеням тех или иных ферментативных субстратов затруднена, поскольку при их введении в организм развиваются соответствующие иммунопатологические реакции. В результате происходит инактивация или полное разрушение фермента. В настоящее время разрабатывают методы для предотвращения этого явления.

ВИТАМИНОТЕРАПИЯ

Витаминотерапия, т. е. лечение определенных наследственных болезней обмена введением витаминов, весьма напоминает заместительную терапию. Однако при заместительной терапии в организм вводят физиологические, "нормальные" дозы биохимических субстратов, а при витаминотерапии (или, как ее еще называют, "мегавитаминной" терапии) - дозы, в десятки и даже сотни раз большие [Барашнев Ю. И. и др., 1979]. Теоретической основой подобного метода лечения врожденных нарушения обмена и функции витаминов является следующее. Большинство витаминов на пути образования активных форм, т. е. коферментов, должны пройти этапы всасывания, транспоргировки и накопления в органах-мишенях. Каждый из этих этапов требует участия многочисленных специфических ферментов и механизмов. Изменение или извращение генетической информации, детерминирующей синтез и активность этих ферментов или их механизмы, может нарушить превращение витамина в активную форму и тем самым помешать ему осуществить свою функцию в организме [Спиричев В. Б., 1975]. Аналогичны и причины нарушения функции витаминов, не являющихся коферментами. Их дефект, как правило, опосредован взаимодействием с неким ферментом и при нарушении его синтеза или активности функция витамина окажется невыполнимой. Возможны и иные варианты наследственных нарушений функций витаминов, но их объединяет то, что симптоматика соответствующих заболеваний развивается при полноценном питании ребенка (в отличие от авитаминоза). Терапевтические дозы витаминов неэффективны, но иногда (при нарушении транспорта витамина, образования кофермента) парентеральное введение исключительно высоких доз витамина или готового кофермента, повышая в какой-то мере следовую активность нарушенных ферментных систем, приводит к терапевтическому успеху [Анненков Г. А., 1975; Спиричев Б. В.. 1975].

Например, болезнь "моча с запахом кленового сиропа" наследуется по аутосомно-рецессивному типу, встречается с частотой 1:60 000. При этом заболевании из организма в больших количествах экскретируются изовалериановая кислота и другие продукты обмена кето-кислот, что придает моче специфический запах. Симптоматика складывается из ригидности мускулатуры, судорожного синдрома, опистотонуса. Одну из форм заболевания успешно лечат избыточными дозами витамина B1 с первых дней жизни ребенка. К другим тиамин-зависимым нарушениям обмена веществ относится подострая некротизирующая энцефаломиелопатия и мегалобластическая анемия.

В СССР наиболее часто встречаются витамин В6-зависимые состояния [Таболин В. А., 1973], к которым относятся ксантуренурия, гомоцистинурия и др. При этих заболеваниях, связанных с генетическими дефектами пиридоксальзависимых ферментов кинурениназы и цистатионинсинтазы, развиваются глубокие изменения интеллекта, неврологические нарушения, судорожный синдром, дерматозы, аллергические проявления и т. д. Результаты раннего лечения этих заболеваний высокими дозами витамина В6 весьма обнадеживают [Барашнев Ю. И. и др., 1979]. Известные витаминзависимые нарушения обмена веществ следующие [по Барашневу Ю. И. и др., 1979].

ХИРУРГИЧЕСКОЕ ЛЕЧЕНИЕ

Хирургические методы нашли широкое применение в лечении наследственных аномалий, прежде всего при исправлении таких пороков развития, как расщелина губы и нёба, полидактилия, синдактилия, врожденный стеноз привратника, врожденный вывих тазобедренного сустава. Благодаря успехам хирургии последних десятилетий стало возможным эффективно корригировать врожденные аномалии сердца и магистральных сосудов, пересаживать почки при их наследственном кистозном поражении. Определенные положительные результаты дает хирургическое лечение при наследственном сфероцитозе (удаление селезенки), наследственном гиперпаратиреозе (удаление аденом паращитовидных желез), тестикулярной ферминизации (удаление гонад), наследственном отосклерозе, болезни Паркинсона и других генетических дефектах.

Специфическим, даже патогенетическим, можно считать хирургический метод в лечении иммунодефицитных состояний. Пересадка эмбриональной (для предотвращения реакции отторжения) вилочковой железы (тимуса) при наследственной иммунопатологии в определенной степени восстанавливает иммунореактивность и значительно улучшает состояние пациентов. При некоторых наследственных болезнях, сопровождающихся дефектами иммуногенеза, производят пересадку костного мозга (синдром Вискотта-Олдрича) или удаление вилочковой железы (аутоиммунные нарушения).

Таким образом, хирургический метод лечения наследственных аномалий и пороков развития сохраняет свое значение как специфический метод.

ДИЕТОТЕРАПИЯ

Диетотерапия (лечебное питание) при многих наследственных болезнях обмена веществ является единственным патогенетическим и весьма успешным методом лечения, а в некоторых случаях и методом профилактики. Последнее обстоятельство тем более важно, что лишь немногие наследственные нарушения обмена веществ (например, дефицит кишечной лактазы) развиваются у взрослых людей. Обычно заболевание проявляется или в первые часы (муковисцидоз, галактоземия, синдром Криглера - Найяра), или в первые недели (фенилкетонурия, агаммаглобулинемия и др.) жизни ребенка, приводя более или менее быстро к печальным последствиям вплоть до смерти.

Простота основного лечебного мероприятия - устранение из пищевого рациона некоего фактора - остается чрезвычайно заманчивой. Однако хотя ни при каких других заболеваниях диетотерапия не выступает самостоятельным и столь эффективным методом лечения [Анненков Г. А., 1975], она требует строгого соблюдения ряда условий и ясного понимания всей сложности получения желаемого результата. Эти условия, по Ю. Е. Вельтищеву (1972), заключаются в следующем: "Точный ранний диагноз аномалии обмена, исключающий ошибки, связанные с существованием фенотипически сходных синдромов; соблюдение гомеостатического принципа лечения, под которым понимается максимальная адаптация диеты к требованиям растущего организма; тщательный клинический и биохимический контроль за проведением диетотерапии".

Рассмотрим это на примере одного из самых распространенных врожденных нарушений обмена веществ - фенилкетонурии (ФКУ). Эта аутосомно-рецессивная наследственная болезнь встречается в среднем с частотой 1:7000. При ФКУ мутация гена приводит к недостаточности фенилаланин-4-гидроксилазы, в связи с чем фенилаланин, поступая в организм, превращается не в тирозин, а в аномальные продукты метаболизма - фенил-пировиноградную кислоту, фенилэтиламин и т.д. Эти производные фенилаланина, взаимодействуя с мембранами клеток центральной нервной системы, припятствуют проникновению в них триптофана, без которого невозможен синтез многих белков. В результате довольно быстро развиваются необратимые психические и неврологические нарушения. Заболевание развивается с началом вскармливания, когда в организм начинает поступать фенилаланин. Лечение заключается в полном удалении фенилаланина из пищевого рациона, т. е. во вскармливании ребенка специальными белковыми гидролизатами. Однако фенилаланин относится к незаменимым, т.е. не синтезируемым в организме человека, аминокислотам и должен поступать в организм в количествах, необходимых для относительно нормального физического развития ребенка. Итак, не допустить, с одной стороны, умственной, а с другой - физической неполноценности - одна из основных сложностей лечения фенилкетонурии, как, впрочем, и некоторых других наследственных "ошибок" метаболизма. Соблюдение принципа гомеостатичности диетотерапии при ФКУ представляет собой довольно сложную задачу. Содержание фенилаланина в пище должно составлять не более 21 % возрастной физиологической нормы, что предупреждает как патологические проявления болезни, так и нарушения физического развития [Бараш-нева С. М., Рыбакова Е. П., 1977]. Современные пищевые рационы для больных ФКУ позволяют дозировать поступление фенилаланина в организм в точном соответствии с его концентрацией в крови по данным биохимического анализа. Ранняя диагностика и незамедлительное назначение диетотерапии (в первые 2-3 мес жизни) обеспечивают нормальное развитие ребенка. Успехи лечения, начатого позже, значительно скромнее: в сроки от 3 мес до года - 26 %, от года до 3 лет - 15 % удовлетворительных результатов [Ладодо К. С., Барашнева С. М., 1978]. Следовательно, своевременность начала диетотерапии - залог ее эффективности в профилактике проявления и лечения этой патологии. Врач обязан заподозрить врожденное нарушение обмена веществ и провести биохимическое исследование, если у ребенка плохо прибавляется масса тела, наблюдаются рвота, патологические "знаки" со стороны нервной системы, отягощен семейный анамнез (ранняя смерть, умственная отсталость) [Вулович Д. и др., 1975].

Коррекция обменных нарушений путем соответствующей специфической терапии разработана для многих наследственных болезней (табл. 8). Однако раскрытие биохимических основ все новых метаболических блоков требует как адекватных методов диетотерапии, так и оптимизации существующих пищевых рационов. Большую работу в этом направлении проводит Институт педиатрии и детской хирургии М3 РСФСР совместно с Институтом питания АМН СССР.

Таблица 8. Результаты диетотерапии при некоторых наследственных болезнях обмена [по Г. А. Анненкову, 1975)
Болезнь Дефектный фермент Диета Эффективность лечения
Фенилкетонурия Фенилаланин-4-гидроксилаза (комплекс трех ферментов и двух кофакторов) Ограничение фенилаланина Хорошая, если лечение начато в первые 2 мес жизни
Болезнь "мочи с запахом кленового сиропа" Декарбоксилазы боковых цепей кетокислот Ограничение лейцина, изолейцина, валина Удовлетворительная, если лечение начато в неонатальном периоде
Гомоцистинурия Цистатионинсинтаза Ограничение метионина, добавление цистина, пиридоксина Прекрасные результаты, если лечение начато до клинических проявлений заболевания
Гистидинемия Гистидиндезаминаза Ограничение гистидина Еще неясна
Тирозинемия n-Гидроксифенил-пируват - оксидаза Ограничение тирозина и фенилаланина То же
Цистиноз Возможно, лизосомная цистинредуктаза либо белки мембранного транспорта, выводящие цистин из лизосом Ограничение метионина и цистина (один из видов терапии) То же
Глицинемия (некоторые формы) Ферментные цепочки превращения пропионата в сукцинат; серин-гидроксиметил-трансфераза Ограничение белка (особенно богатого глицином и серином) Хорошая
Болезни нарушения цикла мочевины (некоторые формы) Орнитин- карбамоил- трансфераза, карбамоил- фосфатсинтаза, аргининосукцинат- синтетаза Ограничение белка Частичная
Галактоземия Галактозо-1-фосфат-уридил-трансфераза Безгалактозная Хорошая, если лечение начато в неонатальном периоде
Непереносимость фруктозы Фосфофруктокиназа Бесфруктозная Хорошая, если лечение начато в раннем детстве
Нарушение всасывания ди- и моносахаридов Кишечные сахараза, лактаза; дефект транспортных белков в клетках стенки кишечника Исключение соответствующих ди- и моносахаридов Хорошая
Метилмалоновая ацидемия и кетонная глицинемия Изомераза 1-метилмалоновой кислоты Ограничение лейцина, изолейцина, валина, метионина, треонина Хорошая
Гликогенез Кори тип I Глюкозо-6-фосфатаза Ограничение углеводов Частичная
Гликогенез Кори тип V Мышечная фосфорилаза Дополнительное введение глюкозы или фруктозы Положительный эффект
Гиперлипидемии, гиперхолестеринемии - Низкое содержание насыщенных жирных кислот, увеличение ненасыщенных Некоторый положительный эффект, но опыт недостаточен
Болезнь Рефсума (церебротендинальный ксантоматоз) - Безрастительная диета Успешное

Рассмотренные методы лечения наследственных болезней в силу установленной этиологии или патогенетических звеньев можно считать специфическими. Однако для абсолютного большинства видов наследственной патологии мы пока не располагаем методами специфической терапии. Это относится, например, к хромосомным синдромам, хотя их этиологические факторы хорошо известны, или к таким болезням с наследственным предрасположением, как атеросклероз и гипертония, хотя отдельные механизмы развития этих заболеваний более или менее изучены. Лечение тех и других оказывается не специфическим, а симптоматическим. Скажем, основная цель терапии при хромосомных нарушениях - коррекция таких фенотипических проявлений, как умственная отсталость, замедленный рост, недостаточная феминизация или маскулинизация, недоразвитие гонад, специфический внешний вид. С этой целью применяют анаболические гормоны, андрогены и эстрогены, гормоны гипофиза и щитовидной железы в комплексе с другими методами медикаментозного воздействия. Однако эффективность лечения, к сожалению, оставляет желать лучшего.

Несмотря на отсутствие достоверных представлений об этиологических факторах мультифакториальных болезней, их лечение с помощью современных медикаментозных средств дает неплохие результаты. Не устраняя причины болезни, врач вынужден постоянно проводить поддерживающую терапию, что является серьезным недостатком. Однако упорный труд сотен лабораторий, изучающих наследственную патологию и методы борьбы с ней, приведет, безусловно, к важным результатам. Фатальность наследственных болезней существует только до тех пор, пока их причины и патогенез не изучены.

ЭФФЕКТИВНОСТЬ ЛЕЧЕНИЯ МУЛЬТИФАКТОРИАЛЬНЫХ БОЛЕЗНЕЙ
В ЗАВИСИМОСТИ ОТ СТЕПЕНИ НАСЛЕДСТВЕННОГО ОТЯГОЩЕНИЯ У БОЛЬНЫХ

Основной задачей клинической генетики становится в настоящее время изучение влияния генетических факторов не только на полиморфизм клинических проявлений, но и на эффективность лечения распространенных мультифакториальных болезней. Выше отмечалось, что этиология этой группы болезней сочетает как генетические, так и средовые факторы, особенности взаимодействия которых обеспечивают реализацию наследственного предрасположения или препятствуют его проявлению. Еще раз кратко напомним, что мультифакториальные болезни характеризуются общими чертами:

  1. высокой частотой среди населения;
  2. широким клиническим полиморфизмом (от скрытых субклинических до резко выраженных проявлений);
  3. значительными возрастными и половыми отличиями в частоте отдельных форм;
  4. сходством клинических проявлений у больного и его ближайших родственников;
  5. зависимостью риска заболевания для здоровых родственников от общей частоты болезни, числа больных родственников в семье, от тяжести течения заболевания у больного родственника и т. д.

Однако сказанное не затрагивает особенности лечения мультифакториальной патологии в зависимости от факторов наследственной конституции организма человека. Между тем клинико-генетический полиморфизм болезни должен сопровождаться большим различием в эффективности лечения, что и наблюдается на практике. Иначе говоря, можно выдвинуть положение о связи эффекта лечения того или иного заболевания со степенью отягощения у конкретного больного соответствующим наследственным предрасположением. Детализируя это положение, мы впервые сформулировали [Лильин Е. Т., Островская А. А., 1988], что на его основе можно ожидать:

  1. значительную вариабельность результатов лечения;
  2. выраженные различия в эффективности различных терапевтических приемов в зависимости от возраста и пола больных;
  3. сходство лечебного эффекта одних и тех же препаратов у больного и его родственников;
  4. отсроченный лечебный эффект (при одинаковой тяжести болезни) у больных с большей степенью наследственного отягощения.

Все перечисленные положения могут быть изучены и доказаны на примерах разнообразных мультифакториальных болезней. Однако, поскольку все они логически вытекают из основной вероятной зависимости - тяжести процесса и эффективности лечения его, с одной стороны, со степенью наследственного отягощения, с другой, - то именно эта связь нуждается в строго верифицированном доказательстве на соответствующей модели. Эта модель заболевания должна удовлетворять, в свою очередь, следующим условиям:

  1. четкая стадийность в клинической картине;
  2. относительно простая диагностика;
  3. проведение лечения в основном по единой схеме;
  4. простота регистрации терапевтического эффекта.

Моделью, достаточно удовлетворяющей поставленным условиям, является хронический алкоголизм, мультифакториальный характер этиологии которого в настоящее время не подвергается сомнению. Вместе с тем наличие синдрома похмелья и запоев достоверно свидетельствует о переходе процесса во II (основную) стадию заболевания, снижение толерантности - о переходе в III стадию. Оценка терапевтического эффекта по длительности ремиссии после проведенной терапии также относительно проста. Наконец, принятая в нашей стране единая схема лечения хронического алкоголизма (аверсионная терапия путем чередования курсов) применяется в большинстве стационаров. Поэтому для дальнейшего анализа мы изучили связь между степенью наследственного отягощения по хроническому алкоголизму, тяжестью его течения и эффективностью лечения в группах лиц с одинаковым возрастом начала заболевания.

По степени наследственного отягощения все больные (1111 мужчин в возрасте от 18 до 50 лет) были разделены на 6 групп: 1-я - лица, не имеющие родственников, страдающих хроническим алкоголизмом или другими психическими заболеваниями (105 человек); 2-я - лица, имеющие родственников I и II степени родства, страдающих психическими заболеваниями (55 человек); 3-я - лица, имеющие больных алкоголизмом родственников II степени родства (дедушки, бабушки, тети, дяди, двоюродные сибсы) (57 человек); 4-я - лица, имеющие отца, страдающего хроническим алкоголизмом (817 человек); 5-я - лица, имеющие мать, страдающую хроническим алкоголизмом (46 человек); 6-я - лица, имеющие обоих больных родителей (31 человек). Тяжесть течения процесса характеризовали по возрасту пациента на момент перехода из одной фазы в другую, а также по длительности временных промежутков между отдельными фазами процесса. Эффективность лечения оценивали по максимальной ремиссии за время течения процесса.
Таблица 9. Средний возраст (годы) возникновения клинических проявлений хронического алкоголизма в группах больных с различной степенью наследственного отягощения
Симптом Группа
1-я 2-я 3-я 4-я 5-я 6-я
Первая алкоголизация 17,1±0,5 16,6±1,0 16,0±1,2 15,8±0,3 15,4±1,0 14,7±1,2
Начало эпизодического пьянства 20,6±1,0 20,1±1,21 19,8±1,5 19,6±0,5 18,7±1,6 18,3±1,5
Начало систематического пьянства 31,5±1,6 26,3±1,9 25,7±2,0 24,6±0,5 23,8±2,1 23,9±2,8
Возникновение синдрома похмелья 36,2±1,2 29,5±2,0 29,3±2,0 28,1±0,5 27,7±2,1 26,3±2,8
Постановка на учет и начало лечения 41,0±1,3 32,7±2,2 34,1±2,1 33,0±0,9 31,8±2,3 30,0±2,8
Развитие алкогольного психоза 41,3±12,5 32,2±6,9 33,5±1,8 28,6±6,6

Анализ данных табл. 9 показывает, что средний возраст первой алкоголизации достоверно отличается в группах с различной степенью наследственного отягощения. Чем выше степень отягощения, тем раньше начинается алкоголизация. Естественно предположить, что средний возраст на момент возникновения всех остальных симптомов тоже будет различен. Представленные ниже результаты подтверждают это. Однако разница, например, между больными двух крайних групп по среднему возрасту первой алкоголизации и началу эпизодического пьянства составляет 2,5 года, тогда как разница между ними по среднему возрасту начала систематического пьянства равна 7 годам, по среднему возрасту возникновения синдрома похмелья - 10 лет, а по среднему возрасту возникновения психоза - 13 лет. Промежутки между началом эпизодического пьянства и переходом к систематическому, длительность систематического пьянства до возникновения синдрома похмелья и алкогольных психозов тем короче, чем выше степень наследственного отягощения. Следовательно, формирование и динамика данных симптомов находятся под генетическим контролем. Этого нельзя сказать о средней длительности интервала от первой алкоголизации до начала эпизодического употребления алкоголя (во всех группах он равен 3,5 года) и средней длительности интервала от формирования синдрома похмелья до постановки больного на учет (во всех группах равен 4 годам), которые, естественно, зависят исключительно от факторов среды.

Переходя к результатам исследования связи эффективности лечения хронического алкоголизма со степенью наследственного отягощения больных, отметим, что у больных наблюдалась достоверная тенденция к уменьшению продолжительности ремиссии при большей степени отягощения. Разница в двух крайних группах (без наследственного отягощения и с максимальным отягощением) составляет 7 мес (соответственно 23 и 16 мес). Следовательно, эффективность проводимых терапевтических мероприятий также связана не только с социальным, но и с биологическими факторами, детерминирующими патологический процесс.

Таблица 10. Прямой анализ наследственных болезней с использованием генных проб для выявления внутригенного дефекта
Болезнь Проба
Недостаточность α 1 -антитрипсина Синтетический олигонуклеотидный α 1 -антитрипсин
Гиперплазия надпочечников Стероид-21 -гидроксилаза
Амилоидная нейропатия (аутосомно-доминантная) Преальбумин
Недостаточность антитромбина III Антитромбин III
Недостаточность хорионического соматомаммотропина Хорионический соматомаммотропин
Хронический гранулематоз (ХГ) "Кандидат" в гены ХГ
Наследственный эллиптоцитоз Протеин 4.1
Недостаточность гормона роста Гормон роста
Идиопатический гемохроматоз HLA - DR - бета
Гемофилия А Фактор VIII
Гемофилия В Фактор IX
Болезнь тяжелых цепей Тяжелые цепи иммуноглобулина
Наследственная персистенция фетального гемоглобина γ-глобулин
Гиперхолестеринемия
Дефицит тяжелых цецей иммуноглобулина Тяжелые цепи иммуноглобулина
Т-клеточный лейкоз Т-клеточные рецепторы, альфа-, бета- и гамма-цепей
Лимфомы Тяжелые цепи иммуноглобулинов
Про-α 2 (I) коллаген, про-α 1 (I) коллаген
Фенилкетонурия Фенилаланингидроксилаза
Порфирия Уропорфириноген-декарбоксилаза
Болезнь Зандхоффа, инфантильная форма β-Гексозоаминидаза
Тяжелый комбинированный иммунодефицит Аденозиндезаминидаза
Альфа-талассемия β-Глобулин, ε-глобин
Бета-талассемия β-Глобин
Тирозинемия II Тирозинаминотрансфераза
Таблица 11. Анализ делеций хромосом и анеуплодии при заболеваниях по данным клонирования генов и ДНК проб
Болезнь Проба
Аниридия Каталаза
Синдром Бекуита - Видемана Инсулин, инсулиноподобный фактор роста
Синдром кошачьего глаза ДНК-сегмент хромосомы 22
Хориодермия DXY I
ДНК-сегменты хромосомы X
Синдром Клайнфелтера ДНК-сегменты хромосомы X
Болезнь Норри DXS 7 (1.28)
Синдром Прадера-Вилли ДНК-сегменты хромосомы 15
Ретинобластома ДНК-сегменты хромосомы 13
Опухоль Вильмса (аниридия) β-субъединица фолликулостимулирующего гормона
Делеция Yp- ДНК-сегменты хромосомы Y
Делеция 5р- ДНК-сегменты хромосомы 5
Синдром 5q- C-fms
Фактор, стимулирующий гранулоциты - макрофаги
Синдром 20q- c-src
Синдром 18р- Альфоидная последовательность хромосомы 18
Таблица 12. Непрямой анализ наследственных болезней с помощью тесно сцепленных полиморфных фрагментов ДНК
Болезнь Проба
Недостаточность α 1 -антитрипсина, эмфизема α 1 -антитрипсин
Синдром Элерса-Данлоса IV типа α 3 (I) коллаген
Гемофилия А Фактор VIII
Гемофилия В Фактор IX
Синдром Леша - Нихена Гипоксантин-гуанинфосфорибозил-трансфераза
Гиперлипидемия Апо-липопротеиду С2
Синдром Марфана α 2 (I) коллаген
Недостаточность орнитин-карбамоилтрансферазы Орнитинтранскарбамилаза
Несовершенный остеогенез I типа α 1 (I) коллаген, α 2 (I) коллаген
Фенилкетонурия Фенилаланингидроксилаза
Таблица 13. Непрямой анализ наследственных болезней с использованием сцепленных сегментов ДНК для изучения совместно наследующихся полиморфизмов ДНК
Болезнь Проба
Поликистоз почек взрослого типа HVR-область 3 до α-глобина
Агаммаглобулинемия р 19-2 (DXS3); S21 (DXS1) сегменты ДНК хромосомы X
Наследственный нефрит Альпорта DXS 17
Ангидротическая эктодермальная дисплазия рТАК8
Болезнь Шарко-Мари-Тута X-сцепленная доминантная DXYS1
Хориодермия DXYS1, DXS11; DXYS 1; DXYS12
Хронический гранулематоз 754 (DXS84); PERT 84 (DXS 164)
Кистозный фиброз Про-α 2 (I) коллаген, 7С22 (7; 18) p/311 (D7S18), С-met S8
Мышечные дистрофии Дюшенна и Беккера PERT 87 (DXS1, 164), разные
Врожденный дискератоз DXS 52, фактор VIII, DXS15
Мышечная дистрофия Эмери-Дрейфуса DXS 15, фактор VIII
Синдром умственной отсталости с ломкой хромосомой X Фактор IX, St14 (DXS 52)
Гемофилия А S14, DX 13 (DXS 52, DXS 15)
Хорея Гентингтона CD8 (D4S10)
Недостаточность 21-гидроксилазы HLA класса I и II
Гиперхолестеринемия Рецептор липопротеида низкой плотности
Гипогидротическая эктодермальная дисплазия DXYS1, 58-1 (DXS 14), 19-2 (DXS3)
Гипофосфатемия доминантная DXS41, DXS43
Синдром Хантера DX13 (DXS 15), разные
Ихтиоз Х-сцепленный DXS 143
Болезнь Кеннеди DXYS 1
Миотоническая дистрофия Сегменты ДНК хромосомы 19 D19 S19; апо-липопротеину С2
Нейрофиброматоз Минисателлитная
Нейропатия Х-сцепленная DXYSl, DXS14 (р58-1)
Пигментный ретинит DXS7 (L 1.28)
Спастическая параплегия DX13 (DXS15); S/14 (DXS52)
Спиноцеребральная атаксия Сегменты ДНК хромосомы 6
Болезнь Вильсона D13S4, D13S10

Таким образом, полученные результаты позволяют сделать вывод о существовании реальной связи между тяжестью течения и эффективностью лечения хронического алкоголизма со степенью наследственного отягощения. Следовательно, анализ наследственного отягощения и его ориентировочная оценка по приведенной в главе 2 схеме должны оказать семейному врачу помощь в выборе оптимальной тактики лечения и прогнозе течения различных мультифакториальных болезней по мере накопления соответствующих данных.

РАЗРАБАТЫВАЕМЫЕ МЕТОДЫ ЛЕЧЕНИЯ

Рассмотрим возможности методов лечения, которые еще не вышли из стен лабораторий и находятся на той или иной стадии экспериментальной проверки.

Анализируя выше принципы заместительной терапии, мы упоминали о том, что распространение этого метода борьбы с наследственной патологией ограничено из-за невозможности целенаправленной доставки необходимого биохимического субстрата к органам, тканям или к клеткам-мишеням. Как и любой чужеродный белок, вводимые "лекарственные" ферменты вызывают иммунологическую реакцию, ведущую, в частности, к инактивации фермента. В связи с этим пытались вводить ферменты под защитой неких искусственных синтетических образований (микрокапсул), что особого успеха не имело. Между тем защита молекулы белка от окружающей среды с помощью искусственной или естественной мембраны остается на повестке дня. С этой целью в последние годы исследуют липосомы - искусственно созданные липидные частицы, состоящие из каркаса (матрикса) и липидной (т. е. не вызывающей иммунологических реакций) мембраны-оболочки. Матрикс можно заполнить любым биополимерным соединением, например, ферментом, который будет хорошо защищен от контакта с иммунокомпетентными клетками организма внешней мембраной. После введения в организм липосомы проникают внутрь клеток, где под действием эндогенных липаз оболочка липосом разрушается и содержащийся в них фермент, структурно и функционально не поврежденный, вступает в соответствующую реакцию. Той же цели - транспорту и пролонгации действия необходимого клеткам белка - посвящены и эксперименты с так называемыми эритроцитными тенями: инкубируют эритроциты больного в гипотонической среде с добавлением белка, предназначенного для транспорта. Далее восстанавливают изотоничность среды, после чего часть эритроцитов будет содержать белок, присутствующий в среде. Нагруженные белком эритроциты вводят в организм, где происходит его доставка органам и тканям с одновременной защитой.

Среди иных разрабатываемых методов лечения наследственных болезней особое внимание не только медицинской, но и широкой общественности привлекает генная инженерия. Речь идет о непосредственном влиянии на мутантный ген, о его исправлении. Путем бирпсии тканей или взятия крови можно получить клетки больного, в которых при культивировании можно заменить или исправить мутантный ген, а затем аутоимплантировать (что исключило бы иммунологические реакции) эти клетки в организм больного. Такое восстановление утраченной функции генома возможно с помощью трансдукции - захвата и переноса вирусами (фагами) части генома (ДНК) здоровой клетки-донора в пораженную клетку-реципиент, где этот участок генома начинает нормально функционировать. Возможность такого исправления генетической информации in vitro с последующим внесением ее в организм была доказана в ряде экспериментов, что и обусловило исключительный интерес к генной инженерии.

В настоящее время, как отмечает В. Н. Калинин (1987), вырисовывается два подхода к исправлению наследственного материала, основанные на генно-инженерных представлениях. Согласно первому из них (генотерапия), от больного может быть получен клон клеток, в геном которых вводится фрагмент ДНК, содержащий нормальный аллель мутантного гена. После аутотрансплантации можно ожидать выработки в организме нормального фермента и, следовательно, ликвидации патологической симптоматики болезни. Второй подход (генохирургия) связан с принципиальной возможностью извлечения оплодотворенной яйцеклетки из материнского организма и замены в ее ядре аномального гена на клонированный "здоровый". В этом случае после аутоимплантации яйцеклетки развивается плод, не только практически здоровый, но и лишенный возможности передачи патологической наследственности в дальнейшем.

Однако перспективы использования генной инженерии для лечения наследственных болезней обмена веществ оказываются весьма отдаленными, как только мы рассмотрим некоторые из возникающих проблем. Перечислим проблемы, не требующие специальных генетических и биохимических знаний [Анненков Г. А., 1975], решение которых пока остается делом будущего.

Введение "здоровой" ДНК в клетку-реципиент без одновременного удаления "поврежденного" гена или участка ДНК будет означать увеличение содержания ДНК в этой клетке, т. е. ее избыток. Между тем избыток ДНК ведет к хромосомным болезням. Не скажется ли избыток ДНК на функционировании генома в целом? Кроме того, некоторые генетические дефекты реализуются не на клеточном, а на организменном уровне, т. е. при условии центральной регуляции. В этом случае успехи генной инженерии, достигнутые в опытах на изолированной культуре, могут не сохраниться при "возвращении" клеток в организм. Отсутствие методов точного контроля за мерой вносимой генетической информации может привести к "передозировке" конкретного гена и вызвать дефект с обратным знаком: например, лишний ген инсулина при диабете приведет к развитию гиперинсули-немии. Вносимый ген должен быть встроен не в любое, а в определенное место хромосомы, в противном случае могут быть нарушены межгенные связи, что скажется на считывании наследственной информации.

Метаболизм клетки с патологической наследственностью приспособлен к атипичным условиям. Стало быть, встроенный "нормальный" ген, а вернее, его продукт - нормальный фермент - может не найти в клетке необходимую метаболическую цепь и ее отдельные составляющие - ферменты и кофакторы, не говоря уже о том, что продукция клеткой нормального, но по сути "чужеродного" белка может вызвать массивные аутоиммунные реакции.

Наконец, в генной инженерии пока не найдено метода, который исправлял бы геном половых клеток; это означает возможность значительного накопления вредных мутаций в будущих поколениях при фенотипически здоровых родителях.

Таковы вкратце основные теоретические возражения против использования генной инженерии для лечения наследственных обменных нарушений. Абсолютное большинство наследственных болезней обмена веществ - результат крайне редких мутаций. Разработка для каждой из этих зачастую уникальных ситуаций соответствующего метода генной инженерии - дело, не только крайне "громоздкое", экономически невыгодное, но и сомнительное с точки зрения времени начала специфического лечения. Для большинства часто встречающихся врожденных "ошибок" метаболизма разработаны методы диетотерапии, дающие при правильном использовании прекрасные результаты. Мы отнюдь не стремимся доказать бесперспективность генной инженерии для лечения наследственных болезней или дискридитировать ее как метод решения многих общебиологических проблем. Сказанное касается прежде всего замечательных успехов генной инженерии в пренатальной диагностике наследственных болезней различного генеза. Основное достоинство при этом состоит в определении конкретного нарушения структуры ДНК, т. е. "обнаружении первичного гена, являющегося причиной заболевания" [Калинин В. Н., 1987].

Принципы ДНК-диагностики относительно просты для понимания. Первая из процедур (блоттинг) заключается в возможности с помощью специфических ферментов - рестрикционных эндонуклеаз - разделить молекулу ДНК на многочисленные фрагменты, каждый из которых может содержать искомый патологический ген. На втором этапе этот ген выявляют с помощью специальных "зондов" ДНК - синтезированных последовательностей нуклеотидов, меченных радиоактивным изотопом. Этот "зондаж" может быть осуществлен различными путями, описанными, в частности, D. Cooper и J. Schmidtke (1986). Для иллюстрации остановимся лишь на одном из них. С помощью генно-инженерных методов синтезируют небольшую (до 20) нормальную последовательность нуклеотидов, перекрывающую место предполагаемой мутации, и метят ее радиоактивным изотопом. Затем эту последовательность пытаются гибридизировать с ДНК, выделенной из клеток конкретного плода (или индивида). Очевидно, что гибридизация произойдет успешно, если тестируемая ДНК содержит нормальный ген; при наличии мутантного гена, т. е. аномальной последовательности нуклеотидов в цепи выделенной ДНК, гибридизация не произойдет. Возможности ДНК-диагностики на современном этапе демонстрируют табл. 10-13, взятые нами из работы D. Cooper и J. Schmidtke (1987).

Таким образом, в ряде вопросов медицинской практики генная инженерия по мере своего развития и совершенствования, безусловно, добьется еще более впечатляющих успехов. Теоретически она остается единственным методом этиологического лечения разнообразных заболеваний человека, в генезе которых тем или иным образом "представлена" наследственность. В борьбе со смертностью и инвалидностью от наследственных болезней нужно использовать все силы и средства медицины.

ПРОФИЛАКТИКА ВРОЖДЕННОЙ ПАТОЛОГИИ У ЖЕНЩИН ИЗ ГРУПП ПОВЫШЕННОГО РИСКА

Проблема борьбы с врожденной патологией человека в связи с ее медицинской и социально-экономической значимостью привлекает исключительно большое внимание специалистов. Продолжающееся увеличение частоты врожденных дефектов (до 6-8 % среди новорожденных, включая умственную отсталость) и прежде всего тех, которые резко снижают жизнеспособность человека и возможность его социальной адаптации, обусловило создание ряда принципиально новых методов профилактики этих расстройств.

Основным путем борьбы с врожденными заболеваниями считаются их дородовая диагностика с помощью специальных дорогостоящих методов и прерывание беременности в случае обнаружения болезни или дефекта. Совершенно очевидно, что, кроме серьезной психической травмы, которая наносится матери, эта работа требует значительных материальных затрат (см. ниже). В настоящее время за рубежом общепризнано, что со всех точек зрения значительно "выгоднее" не столько вовремя диагностировать беременность аномальным плодом, сколько вообще не допустить возникновения такой беременности. С этой целью осуществляется ряд международных программ по профилактике наиболее тяжелых видов врожденных аномалий - так называемых дефектов нервной трубки - отсутствие головного мозга (анэнцефалия), расщепление позвоночника с грыжей спинного мозга (спина бифида) и другие, частота которых в различных регионах мира колеблется от 1 до 8 на 1000 новорожденных. Очень важно подчеркнуть следующее: от 5 до 10 % матерей, родивших таких детей, имеют аномальное потомство от последующей беременности.

В связи с этим основной задачей указанных программ является профилактика именно повторного появления аномальных детей у женщин, уже имевших ребенка с пороками развития в предыдущей беременности. Это достигается путем насыщения организма женщины некоторыми физиологически активными веществами. В частности, проведенные в некоторых странах (Великобритания, ЧССР, ВНР и др.) исследования показали, что прием витаминов (особенно фолиевой кислоты) в различных сочетаниях перед зачатием и в первые 12 нед беременности сокращает частоту повторного рождения детей с дефектами нервной трубки с 5-10 % до 0-1 %

  1. Андреев И. О фавизме и его этиопатогенезе//Современные проблемы физиологии и патологии детского возраста. - М.: Медицина, 1965. - С. 268-272.
  2. Анненков Г. А. Диетотерапия наследственных болезней обмена веществ//Вопр. питания. - 1975. - № 6. - С. 3-9.
  3. Анненков Г. А. Генная инженерия и проблема лечения наследственных болезней человека//Вестн. АМН СССР. - 1976. - № 12. - С. 85-91.
  4. Барашнев Ю. И., Вельтищев Ю. Е. Наследственные болезни обмена веществ у детей. - Л.: Медицина, 1978. - 319 с.
  5. Барашнев Ю. И., Розова И. Н., Семячкина А. Н. Роль витамина Be в лечение детей с наследственной патологией обмена веществ//Вопр. питания. - 1979. - № 4. - С. 32-40.
  6. Барашнев Ю. И., Руссу Г. С., Казанцева Л. 3. Дифференциальный диагноз врожденных и наследственных заболеваний у детей. - Кишинев: Штиинца, 1984. - 214 с,
  7. Барашнева С. М., Рыбакова Е. П. Практический опыт организации и применения диетического лечения при наследственных энзимопатиях у детей//Педиатрия. - 1977. - № 7. - С. 59-63.
  8. Бочков Н. П. Генетика человека. - М.: Медицина, 1979. - 382 с.
  9. Бочков Н. П., Лильин Е. Т., Мартынова Р. П. Близнецовый метод//БМЭ. - 1976. - Т. 3. - С. 244-247.
  10. Бочков Н. П., Захаров А. Ф., Иванов В. П. Медицинская генетика.- М.: Медицина, 1984. - 366 с.
  11. Бочков Н. П. Профилактика наследственных болезней//Клин. мед. - 1988. - № 5. - С. 7-15.
  12. Буловская Л. Н., Блинова Н. Н., Симонов Н. И. и др. Фенотипические изменения в ацетилировании у опухолевых больных//Вопр. онкол. - 1978. - Т. 24, № 10. - С. 76-79.
  13. Вельтищев Ю. Е. Современные возможности и некоторые перспективы лечения наследственных болезней у детей//Педиатрия. - 1982. - № П. -С. 8-15.
  14. Вельтищев Ю. E., Каганова С. Ю., Таля В. А. Врожденные и наследственные заболевания легких у детей. - М.: Медицина, 1986. - 250 с.
  15. Генетика и медицина: Итоги XIV Международного генетического конгресса/Под ред. Н. П. Бочкова. - М.: Медицина, 1979.- 190 с.
  16. Гиндилис В. М., Финогенова С. А. Наследуемость характеристик пальцевой и ладонной дерматоглифики человека//Генетика.- 1976. - Т. 12, № 8. - С. 139-159.
  17. Гофман-Кадошников П. Б. Биологические основы медицинской генетики. - М.: Медицина, 1965. - 150 с.
  18. Гринберг К. Н. Фармакогенетика//Журн. Всесоюзн. хим. об-ва. - 1970. - Т. 15, № 6. - С. 675-681.
  19. Давиденков С. Н. Эволюционно-генетические проблемы в невропатологии. - Л., 1947. - 382 с.
  20. Давиденкова Е. Ф., Либерман И. С. Клиническая генетика. - Л.: Медицина, 1975. - 431 с.
  21. Давиденкова Е. Ф., Шварц Е. И., Розеберг О. А. Защита биополимеров искусственными и естественными мембранами в проблеме лечения наследственных заболеваний//Вестн. АМН СССР. - 1978.- № 8. - С. 77-83.
  22. Джавадов Р. Ш. К выявлению фавизма в Азербайджанской ССР// Азерб. мед. журн. - 1966. - № 1. - С. 9-12.
  23. Добровская М. П., Санкина Н. В., Яковлева А. А. Состояние процессов ацетилирования и некоторые показатели липидного обмена при инфекционном неспецифическом артрите у детей//Вопр. охр. мат. - 1967. - Т. 12, № 10. - С. 37-39.
  24. Замотаев И. П. Побочное действие лекарств. - М.: ЦОЛИУВ, 1977. - 28 с.
  25. Заславская Р. М., Золотая Р. Д., Лильин Е. Т. Метод близнецовых исследований "контроля по партнеру" в оценке гемодинамических эффектов нонахлазина//Фармакол. и токсикол. - 1981. - № 3.- С. 357.
  26. Игнатова М. С., Вельтищев Ю. Е. Наследственные и врожденные нефропатии у детей. -Л.: Медицина, 1978. - 255 с.
  27. Идельсон Л. И. Нарушения порфиринового обмена в клинике. - М.: Медицина, 1968. - 183 с.
  28. Кабанов М. М. Реабилитация психически больных. - 2-е изд. - Л.: Медицина, 1985. - 216 с.
  29. Калинин В. Н. Достижения в молекулярной генетике//Достижения современной генетики и перспективы их использования в медицине. - Серия: Медицинская генетика и иммунология. - ВНИИМИ, 1987. - № 2. - С. 38-48.
  30. Канаев И. И. Близнецы. Очерки по вопросам многоплодия. - М.-Л.: Изд. АН СССР, 1959.- 381 с.
  31. Козлова С. И. Медико-генетическое консультирование и профилактика наследственных болезней//Профилактика наследственных болезней (сборник трудов)/Под ред. Н. П. Бочкова. - М.: ВОНЦ, 1987.- С. 17-26.
  32. Кошечкин В. А. Выделение генетических факторов риска ишемической болезни сердца и их использование при диспансеризации//Профилактика наследственных болезней (сборник трудов)/Под ред. Н. П. Бочкова.- М.: ВОНЦ, 1987.- С. 103-113.
  33. Краснопольская К. Д. Достижения в биохимической генетике//Достижения современной генетики и перспективы их использования в медицине. - Серия: Медицинская генетика и иммунология. - ВНИИМИ, 1987. - № 2. - С. 29-38.
  34. Ладодо К. С., Барашнева С. М. Успехи диетотерапии в лечении наследственных заболеваний обмена у детей//Вестн. АМН СССР.- 1978. - № 3. - С. 55-60.
  35. Лильин Е. Т., Мексин В. А., Ванюков М. М. Фармакокинетика сульфалена. Связь между скоростью биотрансформации сульфалена и некоторыми фенотипическими признаками//Хим.-фарм. журн. - 1980. - № 7. - С. 12-16.
  36. Лильин Е. Т., Трубников В. И., Ванюков М. М. Введение в современную фармакогенетику. - М.: Медицина, 1984. - 186 с.
  37. Лильин Е. Т., Островская А. А. Влияние наследственного отягощения на течение и эффективность лечения хронического алкоголиз-ма//Сов. мед. - 1988. - № 4. - С. 20-22.
  38. Медведь Р. И., Луганова И. С. Случай острой гемолитической анемии - фавизма в Ленинградской области//Вопр. гематол. и переливания крови. - 1969. -Т. 14, № 10. - С. 54-57.
  39. Методические рекомендации по организации в Белоруссии медико-генетического обследования детей с хромосомными болезнями. - Минск, 1976. - 21с.
  40. Никитин Ю. П., Лисиченко О. В., Коробкова Е. Н. Клинико-генеалогический метод в медицинской генетике. Новосибирск: Наука, 1983. - 100 с.
  41. Основы цитогенетики человека / Под ред. А. А. Прокофьевой-Бельговской. - М.: Медицина, 1969. - 544 с.
  42. Покровский А. А. Метаболические аспекты фармакологии и токсикологии пищи. - М.: Медицина, 1979. - 183 с.
  43. Спиричев В. Б. Наследственные нарушения обмена и функции витаминов//Педиатрия. - 1975. - № 7. - С. 80-86.
  44. Столин В. В. Самосознание личности. - М.: Изд-во МГУ, 1983. - 284 с.
  45. Таболин В. А., Бадалян Л. О. Наследственные болезни у детей. - М.: Медицина, 1971. - 210 с.
  46. Фармакогенетика. Серия технических докладов ВОЗ, № 524. - Женева, 1975. - 52 с.
  47. Холодов Л. Е., Лильин Е. Т.. Мексин В. А., Ванюков М. М. Фармакогенетика сульфалена. II Популяционно-генетический аспект//Генетика. - 1979. - Т. 15, № 12. - С. 2210-2214.
  48. Шварц Е. И. Итоги науки и техники. Генетика человека/Под ред. Н. П. Бочкова. - М.: ВИНИТИ АН ССР, 1979.-Т. 4.- С. 164-224.
  49. Эфроимсон В. П., Блюмина М. Г. Генетика олигофрений, психозов, эпилепсий. - М.: Медицина, 1978. - 343 с.
  50. Asberg М., Evans D.. Sjogvest F. Genetic control of nortriptiline plasma levels in man: a study of proposit with high plasma concentration//J. med. Genet.- 1971. - Vol. 8. - P. 129-135.
  51. Beadl J., Tatum T. Genetic control of biochemical reactions in neurospora//Proc. Nat. Acad. Sci. - 1941, - Vol. 27. - P. 499-506.
  52. Bourne J., Collier H.. Somers G. Succinylcholine muscle relaxant of short action//Lancet.- 1952. - Vol. 1. - P. 1225-1226.
  53. Conen P., Erkman B. Frequency and occurrence of chromosomal syndromes D-trisomy//Amer. J. hum. Genet. - 1966. - Vol. 18. - P. 374-376.
  54. Cooper D., Schmidtke Y. Diagnosis of genetic disease using recombinant DNA//Hum. genet. - 1987. - Vol. 77. - P. 66-75.
  55. Costa Т., Seriver C.. Clulds B. The effect of mendelian disease on human health: a measurement//Amer. J. med. Genet. - 1985. - Vol. 21. - P. 231-242.
  56. Drayer D., Reidenberg M. Clinical consequences of polymorphic acety-lation of basic drugs//Clin. Pharmacol. Ther.- 1977. - Vol. 22, N. 3. - P. 251-253.
  57. Evans D. An improved and simplified method of detecting the acetylator phenotype//J. med. Genet.- 1969. - Vol. 6, N 4. - P. 405-407.
  58. Falconer D. S. Introduction to quantitative genetics. - London: Oliver and Boyd, 1960. - 210 p.
  59. Ford С. E., Hamarton J. L. The chromosomes of man//Acta genet, et statistic, med. - 1956. - Vol. 6, N 2. - P. 264.
  60. Garrod A. E. Inborn errors of metabolism (Croonian Lectures)//Lancet. - 1908. - Vol. 1, N 72. - P. 142-214.
  61. Jacobs P. A., Baikie A. J. Court Brown W. M. et al. Evidence of existence of human "superfemale"//Lancet. - 1959. - Vol. 2. - P. 423.
  62. Kaousdian S., Fabsetr R. Hereditability of clinical chemistries in an older twin//J. Epidemiol. - 1987. - Vol. 4, N 1, -P. 1 - 11.
  63. Karon М., Imach D., Schwartz A. Affective phototherapy in congenital nonobstructive, nonhemolytic jaundice//New Engl. J. Med. - 1970. - Vol. 282. - P. 377-379.
  64. Lejeune J., Lafourcade J., Berger R. et al. Trios cas de deletion du bras court d’une chromosome 5//C. R. Acad. Sci.- 1963. - Vol. 257.- P. 3098-3102.
  65. Mitchcel J. R., Thorgeirsson U. P., Black М., Timbretl J. Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydranize//Clin. Pharmacol. Ther. - 1975. - Vol. 18, N 1. - P. 70-79.
  66. Mitchell R. S., Relmensnider D., Harsch J., Bell J. New information on the clinical implication of individual variation in the metabolic handing of antituberculosis drug, particularly isoniazid//Transactions of Conference of the Chemotherapy of Tuberculosis. - Washington: Veter. Administ., 1958.- Vol. 17.- P. 77-81.
  67. Moore К. L., Barr M. L. Nuclear morphology, according to sex, in human tissues//Acta anat. - 1954. - Vol. 21. - P. 197-208.
  68. Serre H., Simon L., Claustre J. Les urico-frenateurs dans le traitement de la goutte. A propos de 126 cas//Sem. Hop. (Paris).- 1970.- Vol. 46, N 50. - P. 3295-3301.
  69. Simpson N. E., Kalow W. The "silent" gene for serum cholinesterase//Amer. J. hum. Genet. - 1964. - Vol. 16, N 7. - P. 180-182.
  70. Sunahara S., Urano М., Oqawa M. Genetical and geographic studies on isoniazid inactivation//Science. - 1961. - Vol. 134. - P. 1530- 1531.
  71. Tjio J. H., Leva N. A. The chromosome number of men//Hereditas. - 1956.- Vol. 42, N 1, - P. 6.
  72. Tocachara S. Progressive oral gangrene, probably due to a lack of catalase in the blood (acatalasaemia)//Lancet.- 1952. - Vol. 2.- P. 1101.

Мы созданы по образу Бога – мы созданы по образу человека

Собравшись в президиуме тесной аудитории в кампусе Калифорнийского университета в Лос-Анджелесе весной 1998 года, восемь известных и авторитетных ученых и два специалиста по биоэтике возвестили миру, что через два или три десятилетия человечество сможет обрести способность произвольно направлять ход своей эволюции. «Мы говорим о вмешательстве в поток генетической информации от одного поколения к другому. Мы говорим об отношении человеческих существ к их генетическому наследию», – объявил Грегори Сток, один из организаторов форума.

Дарвин вырвал эволюцию из рук Господа, но не отдал ее в руки человека. Перспектива контроля и управления собственной эволюцией переворачивает с ног на голову основополагающую религиозную доктрину. Генная терапия наследственной патологии, которая потенциально вручает человеку власть изменять пул человеческих генов, ставит под сомнение древнейший иудео-христианский догмат «Мы созданы по образу и подобию Божьему». Человек, управляющий собственной эволюционной судьбой, пробуждает ощущение, что человек вторгается в область Бога и поднимает такие вопросы, как: «Не играем ли мы роль господа Бога?» И даже более глубоко: произвольно направляемая эволюция ставит под вопрос само существование Бога.

«Я думаю, что мне очень хотелось бы вернуть старое доброе время, когда все было предельно просто и ясно. Есть дела Господа и дела людей, и эти два феномена никогда не пересекались, – говорит раввин Гринберг, продолжая свой рассказ. – В пятидесятые годы, когда я был еще маленьким, в Нью-Йорке стояло необычно засушливое лето, и тогда власти прибегли к химическому засеву облаков. Это было одно из самых первых применений высоких технологий (которое вызвало среди богословов споры о том, не играем ли мы, люди, в Бога). Я помню карикатуру в «Нью-Йоркер», на которой была изображена группа министров с озабоченными лицами, сидящая вокруг стола. Министры смотрят в окно, и один из них спрашивает остальных: «Это наш дождь или их?»

Наука

Генная инженерия стволовых клеток включает в себя индукцию генетических изменений в зародышевых или половых клетках млекопитающих. Эксперименты, проведенные на животных, обычно выполнялись на оплодотворенных яйцеклетках, чтобы полученные изменения были скопированы каждой клеткой развивающегося организма. Поскольку патологическим процессом поражаются половые клетки, постольку все последующие поколения с большой долей вероятности унаследуют изменения. Такая способность манипулировать половыми клетками и переносить наследственные признаки от одного поколения к следующему открывает возможность того, что настанет время, когда родители смогут предотвратить передачу своим детям и всем последующим потомкам таких наследственных заболеваний, как синдром Дауна, серповидно-клеточная анемия или болезнь Паркинсона. В настоящее время для лечения некоторых болезней человека используется соматическая генная терапия (то есть терапия, не затрагивающая половые клетки, и поэтому не передающая индуцированные изменения по наследству), но без большого эффекта. Генная терапия стволовыми клетками обещает быть более эффективной в лечении болезней, но этот метод чреват и большими последствиями.

Эти мощные новые генетические технологии являются «наукой о жизни, а не исследованиями лунных гор, – предостерегает богослов Шрайвер. – Такие исследования могут повлиять на судьбу населяющих Землю человеческих существ. Это очень большой и спорный вопрос».

Возможность столь важного для всех людей прорыва в медицинской науке возникла вследствие большого прогресса в понимании человеческого генома. Исследования проводятся под эгидой финансируемого правительствами проекта «Геном человека» в США, проекта «Генетон» во Франции и Центра Генома человека в токийском университете в Японии и еще пятнадцати странах мира. Однако такие частные компании, как «Celebra», «Incyte», «Geron», «Human Genome Science Inc.» и «Millenium», вторглись в эту область и тоже делают там важнейшие открытия. Проект «Геном человека», начатый в 1990 году, – грандиозное научное предприятие; правительство Соединенных Штатов за пятнадцатилетний период намерено потратить на этот проект 3 миллиарда долларов в надежде, что ученым удастся идентифицировать и секвенировать человеческий геном (от 80 до 100 тысяч генов в человеческой клетке). Есть надежда, что определить полную последовательность азотистых оснований в геноме человека удастся к 2002 году (Книга была опубликована в США в 1999 г. – Примеч. ред.) , что сделает возможным для ученых в двадцать первом веке, имея на руках карту последовательностей ДНК, исследовать биологию человека с такой полнотой, какую раньше считали фантастической.

Сетевой сайт «Проект Геном человека» пытается сделать научное содержание этого подвига доступным для среднего американца, что предвещает возможность широкого и плодотворного диалога.

Геном – это вся ДНК организма, включая и гены. Гены несут информацию для синтеза всех белков, которые требуются организму. Эти белки определяют среди прочего внешний облик организма, насколько хорошо он усваивает пищу и борется с инфекцией, а иногда и то, как он себя ведет. Порядок расположения молекул ДНК лежит в основе всего разнообразия жизни, вплоть до того, что именно последовательность молекул определяет, будет ли данный организм человеком или, скажем, дрожжами, рисом или плодовой мушкой-дрозофилой, каждый из которых имеет свой собственный геном и является предметом собственных геномных проектов. Так как все организмы родственны между собой, а степень такого родства определяется подобием последовательностей молекул ДНК, то сведения, полученные при изучении нечеловеческих геномов (например, генома бактерии кишечной палочки), часто способствуют получению новых знаний о биологии человека.

На симпозиуме в Калифорнийском университете в Лос-Анджелесе (который был свободным и открытым для публики) председатель департамента молекулярной био-технологии медицинского факультета вашингтонского университета Лерой Худ также попытался преподать основы генетики на языке, понятном любителю. На симпозиуме, как и планировалось, присутствовали самые разнообразные люди – ученики старших классов, журналисты, писатели и врачи, приехавшие со всех концов Соединенных Штатов и со всего мира.

«Расшифровать геном человека – значит раскрыть строение двадцати четырех хромосом человека, – сказал Худ. – Под расшифровкой мы понимаем несколько раз личных вещей. Масштабы этой задачи поистине исполинские. В языке ДНК три миллиарда букв. И конечно, геном человека это самая сложная, невероятно сложная компьютерная программа из всех, когда-либо созданных. В данном случае мы имеем программу, которая диктует и направляет развертывание самого чарующего из всех процессов (развития человека), начиная с единственной клетки – оплодотворенной яйцеклетки. Эта программа способна направить хромосомную хореографию, которая определяет для каждого типа клеток тот единственный набор действующих только в этих клетках сотен тысяч генов, которые экспрессируются только в определенных типах клеток совершенно уникальным образом». (Каждый тип клеток «работает» со своим уникальным набором активных генов, все остальные в данной клетке репрессированы, то есть блокированы.)

Для того чтобы вывести науку из лабораторий на открытые форумы, как электронные, так и в уютных пригородных залах, ученые делают язык науки менее устрашающим, что делает нас способными понимать существо последствий – как намеренных, так и ненамеренных – применения этих новых технологий.

Обещание

Генная терапия наследственных болезней стволовыми клетками обещает нам построить мир, свободный от наследственных болезней, создать медицину, которая скорее исцеляет, чем лечит, обеспечить более здоровую и долгую жизнь и, согласно мнению некоторых ученых, внушить уверенность в том, что если генетики допустят ошибку, работая с геномом человека, то эта технология обратима и ошибку всегда можно будет исправить. Большинство ученых, теологов и специалистов по биоэтике принимают то, что эти технологии внесут положительный вклад в лечение основных заболеваний, угрожаю щих человечеству. «Честно говоря, я чувствую, что это невероятный успех, – говорит раввин Гринберг. – Усиление человеческого достоинства, удлинение человеческой жизни, улучшение здоровья, расширение основ достойных условий жизни для большего числа людей, конечно, далеко не всех, но гораздо большего числа, чем раньше. Я думаю, что новое течение в науке достойно всяческого уважения».

Кевин Фицджеральд, иезуитский священник и генетик из университета Лойолы в Чикаго, говорит: «Мы будем пользоваться частью этих достижений с блеском, с удивительно чудесными результатами, спасем множество людей и добавим качество жизни там, где человеку грозила пожизненная инвалидность. Мы будем делать волшебные вещи».

Даже Католическая Церковь, которая лишь недавно (1992 год) принесла извинения за обвинение Галилея и еще позже (1996 год) отказалась от дебатов по поводу творения и эволюции, официально поддерживает генную терапию стволовыми клетками. Церковь преисполнена оптимизма по поводу благодеяний генетических технологий. «В эпоху ограниченных медицинских ресурсов, – заявил представитель католической церкви по вопросам медицинской этики Дерфлингер, – лучшее понимание генетического строения человека позволит нам пополнить ресурсы здравоохранения там, где они в наибольшей степени ограничены, и для тех, кто больше других нуждается в помощи».

Ученые, специалисты по биоэтике и богословы не могут сдержать восхищения перед возможностями генной терапии стволовыми клетками во имя уменьшения человеческих страданий и лечения считавшихся прежде неизлечимыми болезней. Любой человек, у которого родился ребенок с дегенеративным заболеванием, родитель с болезнью Альцгеймера или любимые нами люди, страдающие раком или СПИДом, имеют теперь надежду на чудесное исцеление. «Инжиниринг стволовых клеток человека вооружает нас способностью достичь благоприятного результата в век генетической науки, которая до сих пор была в большой степени теоретической», – сказал организатор симпозиума в Калифорнийском университете Грегори Сток.

Проект «Геном человека» размещает свои обещания на сетевых сайтах: «Проект позволит собрать фантастический урожай благотворных для человечества результатов; некоторые из этих благодеяний мы можем предвидеть, но некоторые станут сюрпризом и для нас самих. Получаемая информация и разработанные технологии революционизируют будущие биологические исследования. Радикально изменится медицинская практика. Основной упор переместится с лечения больного на профилактический подход. Возможности коммерческих разработок представят промышленности Соединенных Штатов громадные возможности, объем продаж биотехнологических продуктов в 2000 году, по прикидкам, достигнет 20 миллиардов долларов».

Доктор Фрэнсис С. Коллинз, директор национального исследовательского института генома человека из национального института здоровья, считает, что «большинство историков будут оглядываться на этот проект, как на самую важную вещь, которую нам удалось сделать на рубеже столетий. Это намного важнее, чем высадиться на Луне или расщепить атом».

Люди будут жить дольше, страдать меньше, а Америка обогатится от этого процесса. Какие еще могут быть дебаты?

Озабоченность

Генная терапия стволовых клеток порождает научные проблемы, связанные с эффективностью технологии, утратой биологического разнообразия, необратимым повреждением генетического пула человечества и непред виденными последствиями генетических манипуляций. Эти технологии порождают также этические проблемы, связанные с евгеникой, генетическим патентованием и генетической приватностью. Эти технологии порождают теологические размышления по поводу исключения полового акта из произведения потомства, уникальности каждой человеческой жизни, генетической предопределенности, игры в Бога и культа индивида.

Противники считают, что ожидания ученых преувеличены. «Я думаю, что крайний оптимизм по поводу генной терапии может на поверку оказаться не столь истинным, – говорит архиепископ Рандольф У. Слай из Восточной провинции международного объединения Харизматической Епископальной Церкви. – Существует много людей, охваченных оптимизмом по поводу того, что мы можем делать с генами, – они думают, что таким путем мы сможем полностью излечить рак или СПИД или любое другое мыслимое заболевание. Это слишком оптимистичный взгляд на вещи, но на практике мы даже не приблизились к этому». Роберт Турман, ведущий американский ученый-буддист, профессор Колумбийского университета, разделяет этот скептицизм и считает, что через тридцать лет утверждения ученых генетиков будут рассматриваться как сильно преувеличенные.

Научные проблемы

Сами ученые признают, что судьба и пути технологических новшеств в какой-то степени непредсказуема. На симпозиуме в Калифорнийском университете Лос-Анджелеса Марио Капекки, выдающийся ученый, профессор биологии и генетики человека университета штата Юта, сказал: «Мы все страдаем склонностью преувеличивать то, что мы можем сделать через пять лет, и недооценивать то, что мы можем натворить через двадцать пять лет».

В то время как научное сообщество разделяет энтузиазм по поводу революции, которую новые технологии могут совершить в современной медицине, ученые признают, что они сейчас находятся в оамом начале пути. Биолог У. Френч Андерсон, первый в мире ученый, который испытал методы ненаследуемой соматической генной терапии в 1990 году, преисполнен оптимизма по поводу будущей эффективности генной терапии стволовыми клетками. «Итак, вот ответ на ваш прямой вопрос: «Работает ли генная терапия?» – «Нет, не работает». Но значит ли это, что она никогда не будет работать? Нет, будет».

Мнения ученых по поводу реальных возможностей различных методик генной технологии также разделились. Биолог Уайвел менее уверен в успехе, чем Андерсон. «У нас возникла масса трудностей в лечении заболеваний, обусловленных поражением единственного гена, – замечает он. – В этом отношении ни в одном из исследовательских протоколов нет даже намека на эффективность».

Еще одна научная проблема, являющаяся источником озабоченности, – это утрата биологического разнообразия. «Мы сталкиваемся с проблемой биологической гомогенизации, что означает примерно то же самое, как если бы все вдруг стали ездить только на «тойотах», – размышлял на симпозиуме Майкл Роуз. Роуз, профессор Калифорнийского университета, сотрудник факультета биологических наук имени Ирвинга, продолжает: – Если у всех нас будет одна и та же хромосома с генами, противодействующими старению, и если окажется, что они ослабляют наш иммунитет по отношению к некоему вирусу, с которым не сталкивались эпидемиологи и который нам неизвестен, и если этот вирус появится, то не убьет ли он всех нас? Ну это же полный облом!»

Другими неожиданными и непреднамеренными последствиями могут оказаться утрата неизвестных позитивных свойств генов, которые мы считаем болезненно измененными или несовершенными. Например, ученые знают, что ген, вызывающий у человека серповидно-клеточную анемию, одновременно повышает устойчивость к малярии. Генетический признак, который обусловливает заболевание муковисцидозом, может защитить от холеры. Ричард Лэнд, президент и руководитель Южного общества баптистской этики и комиссии по религиозной свободе, очень живо описал возможные негативные непреднамеренные последствия: «Если мы действительно достигнем успеха и сможем избавиться от синдрома гиперактивного дефицита внимания у детей, заболевания, которое делает детей плохо управляемыми, то скольких музыкантов, художников и астронавтов изымем мы из нашего генетического пула? Сколько исследователей и первооткрывателей? Мы можем превратить весь генетический пул человечества в пул бухгалтеров и клерков». Ни один ученый не отдает себе полного отчета в том, насколько хорошо гены, вызывающие патологию, могут служить человечеству.

Необратимое повреждение генного пула человечества – одна из главных серьезных забот, беспокоящих ученых. Многие настоятельно советуют, чтобы генная терапия зародышевых линий (которая представляется самой многообещающей из всех видов генной терапии) использовалась только в том случае, когда будет разработана соответствующая методика, которая предотвратит передачу нового признака следующему поколению. Другими словами, ученым ставят задачу создать терапию, которая была бы чудесной и эффективной, но не влияла бы на ход человеческой эволюции. Некоторые ученые предлагают микроскопические «ножницы», которыми можно было бы вырезать новый генетический материал из половых клеток эмбриона с тем, чтобы его потомки не наследовали искусственно введенный признак.

Биолог Андерсон сурово предостерегает: «В противоположность всем другим способам принятия решений в медицине это лечение касается чего-то большего, нежели пациента, семьи и врача. Генетический пул не принадлежит ни одному отдельному человеку, это достояние всего общества как целого. И если вы манипулируете на генном пуле, то перед тем, как пытаться это делать, вам надо получить согласие общества».

Этические проблемы

Сутью дебатов на этические темы по поводу генной терапии (которые включают вопросы генетической тайны, неравенства доступа и генетическое патентование) является противоречие между лечением и улучшением. Используем ли мы генную терапию стволовых клеток только как метод излечения основных заболеваний, или мы должны распространить эту технологию также на улучшение наследственных признаков?

Существует глубокая озабоченность тем, что эти технологии могут выскользнуть из области лечения в область моды так же, как реконструктивные операции, разработанные в свое время для солдат, получивших обезображивающие ранения на поле боя, стали использоваться в косметической хирургии. Среди теологов, ученых и специалистов по биоэтике распространено отвращение к генетическому изменению людей ради «поверхностного» улучшения, например, ради большего размера груди, но среди них нет полного согласия относительно того, где провести демаркационную линию между лечением и улучшением. Сами ученые до сих пор не могут прийти к единому мнению относительно того, что надо считать болезнью и как ее определить. Являются ли дислексия и расстройство внимания болезнями, или их лучше понимать как признаки, которые находятся в противоречии с нашим сидячим и основанном на чтении текстов обществом? Ожирение – это болезнь или следствие изнеженного образа жизни?

«Мы так мало знаем о человеческом организме! Но мы знаем так мало и о сути самой жизни, что нам не стоит применять генную инженерию для улучшения чего бы то ни было, – предупреждает коллег биолог У. Френч Андерсон. – Наш долг – с максимальным чувством ответственности войти в эру генной инженерии. И это означает, что нам следует использовать эту мощную технологию только для лечения и не применять ее для других целей».

Легко представить себе исход генной терапии стволовыми клетками, используемой для улучшения, а не для лечения: конструирование детей, как торговый эксперимент, или выведение поколения абсолютно одинаковых детей. Представьте себе поколения, отмеченные не популярными именами той или иной эпохи, такими, как Генри или Рут (1910 год), или Патрисия и Чарльз (1950 год), или Остин и Кэйтлин (1998 год), или выделяющееся не стилем, как, например, татуировкой и пирсингом, а генетически предопределенными признаками, такими, как рост, строение лица и пропорции талии и бедер. Родители могут выбрать в качестве модели идеальной красоты Мону Лизу, Барби или Тома Круза. Дочери-подростки с большим недовольством отнесутся к родителям, которые выбрали для них не то лицо, чем к родителям, которые выбрали для них неподходящее имя. Сыновья могут быть разочарованы тем, что родители купили для них, скажем, футбольный талант вместо бейсбольного.

Многие, однако, ставят под сомнение способность этой технологии манипулировать и контролировать сложные признаки. Типичен в этом отношении скептицизм историка искусств из Нью-Йоркского университета и художника Кирби Гукина: «Ли Сильвер и некоторые другие предполагают, что мы действительно сможем покупать наших детей, выбирая при этом их тип и их интеллект. Все это чистая гипотеза, но они верят в нее – генетики, проникшие в суть вещей, – думая, что генетическая нить идентифицирует признаки очень специфично, связно и вдумчиво. Но я не согласен даже с этим. Тем не менее, допуская, что можно заказать в магазине рост и баскетбольный талант, и определенный тип интеллекта, математического или творческого, то почему нельзя заказать добавочную руку? Можно делать одновременно гораздо больше вещей, стать более ловким и умелым. Это будет настоящее изготовление схем по эскизам заказчика. Но сможете ли вы создать шестифутового баскетболиста с талантом конструктора ракет? Вот о чем я хотел бы вас спросить».

Евгеника

Идея улучшения человеческой породы имеет исторические корни, омраченные эмоционально окрашенными воспоминаниями. «Я думаю, что евгенические мечтания и биологический перфекционизм нацистов и других им подобных был частично остановлен тем, что на их вооружении не было науки, – говорит специалист по биоэтике Каплан. – Но посмотрите в окно. Наука на пороге!»

Идея евгеники происходит из дарвиновской теории эволюции и открытых Менделем законов наследования признаков (эти законы позволили раскрыть механизм передачи биологических признаков). Автором идеи стал ученый викторианской эпохи сэр Френсис Гальтон. Согласно мнению Гукина, «моральная и эстетическая обязанность художника усовершенствовать образ человеческого тела теперь перенесена в поле генетической науки. С генетикой ученым было дано средство, с помощью которого эстетическую и моральную концепцию «улучшения» стало возможным приложить к самому человеческому телу, а не к его образу».

Сэр Френсис Гальтон определял свою идею евгеники, как «науку улучшения человеческой расы путем бо лее совершенного скрещивания». Гукин, пишущий книгу о евгенике, поясняет:

Таким образом, Гальтон, полагая, что все наследуется, включая моральные качества личности, занялся изучением отпечатков пальцев, профилей лиц, семейной истории и всем подобным в надежде открыть метод составления оценки физического, ментального и морального склада отдельно взятой единичной личности. Используя в качестве модели скрещивание животных, Гальтон надеялся, что со временем будет открыт и понят механизм наследственности, а когда будут усовершенствованы методы отличия «желательных» членов общества от «нежелательных», можно будет основать евгенику как науку. Он верил, что высшую человеческую расу можно вывести путем скрещиваний и селекции. В идеале можно вывести желательный «темперамент, характер и способности» в качестве видового признака (как это делают с собаками) и избавить человечество от менее желательных признаков, таких, как «склонность к пьянству», «склонность к преступлениям», «неумелость», «праздность» и «склонность к нищенству».

Призрак гальтоновской евгеники и попыток нацистов создать идеальную расу присутствует в возражениях по поводу технологии стволовых клеток, используемой для улучшения человеческой породы. «Меня действительно интересует, как отразится на формировании нашего организма продажа генетической информации и продажа генетического совершенства, – рассуждает специалист по биоэтике Каплан. – Первые признаки кажутся мне не слишком обнадеживающими. Думаю, что начнутся попытки создания рынка для людей, которые будут неуютно себя чувствовать, если у них не будет генетического сертификата для их эмбрионов и сексуальных партнеров.

Скоро мы будем слышать: «Как ты посмел создать ребенка с известным ментальным нарушением?» В рыночном обществе будут продаваться свидетельства совершенства. Можно почти явственно представить себе палатки на ярмарке: «Гены воспитывают нас».

Но не все высказывают подобные опасения. Джеймс Уотсон, который вместе со своим коллегой Френсисом Криком открыл двойную спираль ДНК, недвусмысленно ратует за полномасштабное введение генных технологий в практику. «Ни у кого не хватает духа произнести это вслух. Я хочу сказать, что если мы можем сделать человека лучше, зная, какие гены ему надо добавить, то почему мы не должны этого делать?»

Генетик Джон Кэмпбелл, также выступавший на калифорнийском симпозиуме, зашел настолько далеко, что высказал сомнение в том, что люди будут полагаться на эволюционные хромосомы, если у них будет выбор. «В каждом поколении родитель захочет наделить своего ребенка новейшими и лучшими модификациями из всех возможных, вместо того чтобы полагаться на хромосомы, данные природой ребенку, родителю и всему поколению».

На том же симпозиуме Дэниел Кошлэнд, профессор молекулярной и клеточной биологии Калифорнийского университета в Беркли отстаивал ту точку зрения, что генетически измененные дети будут превосходить обычных детей. «Если придерживаться того критерия, что дети должны по меньшей мере стать не хуже своих родителей, то, как мне кажется, генная инженерия стволовых клеток сможет соперничать с естественным способом зачатия. Но если мы станем придерживаться того критерия, что дети должны соответствовать ожиданиям родителей, то я думаю, что сконструированные дети превзойдут детей, зачатых обычным способом».

Этот энтузиазм разделяют также некоторые теологи, особенно представители восточных религий. Ученый индуист К. Л. Сешагири Рао, почетный профессор религиоведе ния Виргинского университета и главный редактор и издатель восемнадцатитомной «Энциклопедии индуизма», не видит никаких причин сдерживать или ограничивать применение новой технологии. «Знание, какое мы получаем, должно быть использовано таким способом, чтобы служить благополучию всех людей. Если физическую красоту, силу и острый ум можно сконструировать, то как можно больше людей должны иметь возможность получить эти черты. Что в этом плохого?» Ученый буддист Турман сказал нам: «Действительно, вы захотите сконструировать наиболее восхитительное, наиболее прекрасное, наиболее полезное и наиболее счастливое существо, какое только сможете себе представить. Я думаю, что это нормально».

Возможность генетического лечения ожирения, депрессии, малорослое™, облысения и искусственного создания красоты, ума, силы и атлетизма воспринимается одними как рецидив евгеники, другими – как плодотворная идея, и как нечто весьма маловероятное третьими. В любом случае для всех этих вещей откроется широкий рынок. Результаты опросов общественного мнения позволяют предположить, что потребность в генетическом улучшении будет существенной. Наблюдения 1986 и 1992 годов показали, что от сорока до сорока пяти процентов американцев публично одобряют концепцию генетических технологий и их применение для улучшения физических и интеллектуальных качеств. И это не удивляет биоэтика Каплана. «Американцы, будучи по природе своей очень предприимчивыми, верят в то, что могут превзойти природу, а если говорить точнее, то самого господа Бога».

Проведение разграничительной линии

Реакция западных богословов занимает весь спектр оценок – от полного неприятия любых приложений технологий (из страха, что она ускользнет из-под контроля) до восторгов по поводу возможностей генной терапии и инженерии. Правда, в целом все согласны в том, что лечение – это естественный ответ на человеческое горе, и новые генные терапии и медицинские технологии, облегчающие страдания, должны поощряться и приветствоваться. Но в общем все также согласны в том, что уникальность жизни каждого отдельного человека и ценности каждого человеческого существа должны исключать генетические улучшения – в особенности косметические.

Теолог Шрайвер пытается найти объяснение в книге Бытия. «Генная инженерия атакует такое природное зло, как болезни. Думаю, что это оправдано. Только в том случае, когда мы переходим к планированию всего генетического пула человечества в согласии с нашими склонностями и исправляем суть человека, его самость в соответствии с некой сиюминутной, популярной и модной в данный момент системой ценностей, только в этом случае мы совершим дерзкое покушение на дар творения. В книге Бытия человек призван возделывать землю и приумножать ее плоды».

Католический этик Дерфлингер сознает, что будет очень трудно провести разграничительную линию. «Позиция Католической Церкви заключается в том, что использование генной терапии в принципе пригодно для излечения болезней и для исправления определенных дефектов. Например, провести генную терапию стволовыми клетками для коррекции нарушений при синдроме Дауна – это благая цель, каковую можно только приветствовать. То, что Церковь считает опасным и чему будет всегда в оппозиции, так это к идее использования генной терапии и инжиниринга стволовых клеток для того, что называется позитивной евгеникой. Для того, чтобы создать лучшее человеческое существо. Но весьма противоречива сама посылка – как вы сможете провести разграничительную линию между позитивной и негативной евгеникой? Неизбежно возникнут серые промежуточные области. Например, мужчинам свойственно лысеть. Есть ли это дефект? Или это просто одно из нормальных состояний, нормальных свойств, которым, кстати говоря, обладаю и я? Тем не менее идут споры о том, является ли лысина дефектом, или это просто одна из границ диапазона нормальных вариаций развития».

Раввин Гринберг не настроен использовать теологические соображения для возражений против идеи улучшения человека, он говорит, что человек заключил с Богом соглашение, обязавшись совершенствовать себя и землю, но раввин искренне и горячо настроен против эстетических и косметических приложений генной технологии. «Если дело дойдет до чистой косметики, то начнутся злоупотребления, и это приведет к упадку».

От исцеления к улучшению

Однако многие специалисты по биоэтике и ученые биологи считают, что применение генных технологий для улучшения и оздоровления неизбежно. «Считаю, что было бы большой ошибкой думать, будто мы можем сказать «да» генной терапии стволовыми клетками и «нет» косметическому улучшению», – говорит Эрик Паренс, специалист по этике из Центра Гастингса в Гаррисоне. Также фаталистически настроен биолог из Нью-Йорка Андерсон: «Генетическое улучшение и оздоровление будут применяться. Конгресс не примет закон, запрещающий лечение облысения».

Однако ученые и специалисты по этике единодушны в том, что главной движущей силой генной инженерии является любовь к неродившемуся ребенку. Большинство родителей сделают любой выбор, лишь бы обеспечить своего ребенка самыми лучшими свойствами. «Генная терапия стволовых клеток будет проводиться, поскольку это соответствует самой природе человека, – говорит Андерсон. – Ни один из нас не захочет передать ребенку летальные гены, если этого можно избежать. Именно это является движущей силой генной терапии стволовых клеток. Когда вы начинаете серьезно размышлять, то есть садитесь и начинаете думать о действительно важных вещах – о ваших любимых, о вашей семье, о том, что на самом деле затрагивает вашу суть, как человеческого существа, то в результате таких раздумий вы ни за что не передадите своему ребенку летальный ген, если существует простое и надежное лечение, которое позволит это предотвратить».

Первым приложением новых генетических технологий будет лечение, призванное исцелять тяжелые калечащие недуги, но по мере того, как пренатальная генная терапия станет усложняться и совершенствоваться, родители почувствуют искушение не допускать никакого отставания своих детей от нормы. Изменится само определение того, что следует считать физической или умственной отсталостью. По мере того как общество чувствует себя все более комфортно с косметическими хирургическими улучшениями, в нем все чаше практикуются такие корригирующие операции как исправление формы носа, липосакция, лазерная хирургия глаза, увеличение объема губ, снятие поверхностного слоя с кожи лица, имплантация протезов скуловых костей и подбородка, увеличение груди – повышается вероятность того, что настанет день, когда безвкусица, низкий рост, большие уши или целлюлит будут считаться физическими и умственными недостатками. В действительности все это уже становится свершившимся фактом. Критик технологии Джереми Рифкин очень красочно иллюстрирует то давление, которое заставит родителей подчиниться. «Что произойдет, если ребенок не запрограммирован и страдает отклонениями от принятой в данной культуре нормы, или имеет инвалидность в том виде, как мы ее определяем? Станем ли мы терпеть такого ребенка или будем смотреть на него, как на ошибку, которую следует испра вить? Что, скажите мне, не так с такими родителями, в чем они не правы?»

Другим центральным пунктом является противопоставление идеала средней норме. «Но как выбрать, что именно является красивым существом? Будет ли такой выбор определяться коммерческим интересом? Каковы будут критерии конструкции?» – вопрошает буддист Турман.

«В случае генной инженерии я чувствую, что стоящая за ней мотивация в действительности развилась из истории искусства, из того, что я называю идеальной красотой, эстетическим идеалом совершенства, – считает историк Гукин. – Очень трудно отделить генетику от евгеники. По сути это старая идея Платона, которую усвоило христианство – несовершенство нашей нравственности – питательная среда для идеи труда по ее усовершенствованию и улучшению. Есть два основных принципа, которые проникли в генетику из искусства. Первая идея заключается в том, что природа несовершенна, и что человек обладает способностями и имеет моральное обязательство усовершенствовать природу, усовершенствовать наш биологический вид. Проблема в том, как отыскать критерии. Вторая предпосылка заключается в том, что существует идеальная человеческая фигура, а ее критерии основаны в первую очередь на симметрии. Критерии пришли из классических представлений об идеальной красоте – которая, если взглянуть на дело упрощенно, суть пропорции, известные из истории искусств».

В наши дни американский стандарт идеальной красоты приходит к нам с телеэкранов, рекламных щитов, из фильмов и журналов. Кейт Мосс, Ума Турман, Наоми Кэмпбелл, Леонардо Ди Каприо, Дензел Вашингтон, Брэд Питт – никто из них, помимо всего прочего, не страдает избыточным весом. Ожирение - это болезнь, считают в настоящее время большинство врачей. Оно также представляет собой большой риск для общего здоровья. Быть худым – критерий номер один для того, чтобы считаться модным и стильным. Избыточный вес, как правило, является следствием сидячего образа жизни и переедания, и этой аномалией страдает одна треть всех американцев. Одна треть от этой одной трети страдает клинически выраженным ожирением.

Представьте себе, насколько легче было бы оставаться тощим, если бы мы могли программировать у себя повышенную скорость обмена веществ. Коррекция ожирения может стать первым приложением генной терапии, которое попадает в серую зону между исцелением и улучшением. Ученые уже идентифицировали девятнадцать генов, отвечающих за ожирение. Вы хотите похудеть для здоровья или для того, чтобы стать стильным?

Что именно делает нас людьми?

Что значит быть человеком – центральный вопрос, лежащий в основе дискуссии на тему: лечение или исправление. Позиция многих ученых, специалистов по биоэтике и теологов ясна: прежде чем носиться с нашей человечностью, неплохо было бы подумать о том, что именно делает нас теми, кто мы есть. «Я знаю, что нет согласия в том, что именно в человеческих существах является наиболее человеческим или наиболее ценным, – говорит представитель Католической Церкви по вопросам биоэтики Дерфлингер. – Не думаю, что мы – простые смертные – имеем право решать и определять, какой тип человека нужен для улучшения общества». Другой специалист по биоэтике Паренс также ставит под вопрос мудрость манипулирования геномом человека. «Существует реальная озабоченность тем, достаточно ли мы мудры, чтобы формировать себя настолько, насколько позволяет это делать новая технология. Такое положение вещей определенно вызывает у нас беспокойство».

Маленький нос, длинные ноги, широкие плечи и узкая талия – все это косметические улучшения, которые легко можно выразить в цифрах. Сама идея генетического усовершенствования предполагает, что признаки могут быть измерены, взвешены (так сказать), а потом запрограммированы. Историк Гукин удивляется по поводу допущения, что мы можем каким-то образом измерить даже такую вещь, как интеллект. «Идея такого рода, идея математического или количественного оформления переводится в форму количественной оценки интеллекта – тест коэффициента умственных способностей. Все формы определенных численных измерения – например, зрение 20/20 – допускают не только измеримое совершенство, но и измеримое среднее. Идея (генной терапии стволовых клеток) заключается в улучшении средних показателей. Почему бы не поднять среднюю планку для всех людей? Процесс объективизации человеческого организма с помощью измерений лежит в основе установления идеальных стандартов человеческого тела, как в искусстве, так и в науке».

При проведении в 1996 году одного из широких международных исследований под руководством Рэнди Торн-хилла из университета в Нью-Мексико ученые пытались установить биологические, научно обоснованные критерии сексуальной привлекательности. В результате исследователи пришли к заключению, что совершенное отношение объема талии к объему бедер у женщин равно 0,7, что с научной точки зрения соответствует наибольшей плодовитости, а у мужчин это соотношение равно 0,9. Плотные симметричные груди, большие глаза, маленький нос, нежный подбородок и гладкая кожа также привлекают мужчин к женщинам, говорится в заключении, независимо от национальности и расовой принадлежности. Наиболее привлекательные для женщин мужчины отличаются ростом чуть выше среднего, выступающим подбородком и широкими скулами, широким лбом, симметричными запястьями и лодыжками и развитой мускулатурой – то есть всеми показателями «высокого биологического качества». Слушая разговоры о возможности генетического улучшения измеримых стандартов сексуальной привлекательности, поддержанных научными исследованиями, начинаешь понимать, что время евгеники уже наступило.

Теолог Шрайвер с тревогой отмечает, что, помимо красоты и сексуальной привлекательности, мы, кроме того, слишком много внимания уделяем интеллекту. «Я не думаю, что интеллект является единственным аутентичным маркером принадлежности к роду человеческому. Есть также доброта. Платон говорит о добром, чистом и красивом. Человеческая способность любить по меньшей мере так же важна, как способность к познанию. Переоценка добродетели знания – это то, от чего надо защититься». Этика, мораль, доброта и любовь не поддаются количественному измерению.

Неравенство доступа

Другой этической проблемой, находящей отклик среди теологов, ученых и специалистов по биоэтике, является потенциальное неравенство в доступе к новой технологии между богатыми и бедными семьями, между богатыми и бедными нациями. Все твердо согласны в том, что это будет большой проблемой, но ни одна из сторон не может пока предложить способ ее решения.

Микробиолог Сильвер весьма прагматично относится к той картине, какую он видит в будущем. «Генная инженерия позволит родителям, у которых есть деньги, дать своим детям преимущество до рождения в дополнение к тем преимуществам, которые они получают после рождения. Реальной проблемой генной инженерии является то, что она настолько хороша, что те, кто не сможет позволить себе воспользоваться ее благами, окажутся в очень невыгодном положении, хотя я не против использования этой технологии».

Специалист по биоэтике Каплан не столь оптимистично оценивает проблему неравенства. «Будут люди, которые смогут позволить себе пройти генетическое тестирование, будут люди, которые смогут получить генетическое лечение, но все это породит то, что мы уже и без того видим в Соединенных Штатах – резкое расслоение в возможности пользоваться благами здравоохранения. Мне не нравится такая система, но я думаю, что это неизбежно произойдет».

Иезуит отец Джеймс Кинан выражает не меньшую озабоченность по поводу доступности генной терапии. «Мы очень удручены тем, что в реальности цены на чудесную генную терапию будут весьма высокими. Настолько высокими, что она окажется доступна только жителям первого мира, да и то лишь тем, кто имеет хорошую медицинскую страховку. Как представители и выразители христианской этики, мы полагаем, что наша ответственность заключается в том, чтобы подумать над вопросами справедливости и доступности генетических методов лечения. Порой мне кажется, что мы увлеклись своей игрой в Господа Бога, вместо того чтобы реально заняться жестокими, чисто экономическими, вопросами справедливости».

Микробиолог Сильвер рисует будущий мир в традициях старого доброго фантастического романа: когда генетические репродуктивные технологии сделаются коммерчески доступными и начнут неравномерно распределяться среди населения, эта технология (приблизительно через триста лет) создаст подвид людей (он называет их натуральными), неспособных к спариванию с генетически улучшенными представителями рода человечества (автор называет их имеющими гены).

Под кожными покровами:

Loading...Loading...