Теоретическая судьба вселенной. Судьба вселенной

Наука выделяет четыре основных пути, на которых может встретить свою судьбу. Это Большое Замерзание, Большой Хруст, Большое Изменение и Большой Разрыв. Если вам эти названия ничего не говорят, сейчас все поймете. Вас не должен удивить факт того, что наша планета обречена. Пройдет немного времени, всего 6 миллиардов лет, и , скорее всего, испарится, когда расширится до и поглотит нашу .

Но Земля - это просто планета в , Солнце - одна из сотен миллиардов в , и в наблюдаемой Вселенной скрываются сотни миллиардов галактик. Что уготовлено для них для всех? Как закончит свои дни Вселенная?

Наука может только догадываться о том, как это произойдет. Мы даже не уверены, как именно Вселенная погибнет, определенным образом или просто медленно сойдет на нет. Наше лучшее понимание физики приводит нас к нескольким вариантам глобального апокалипсиса. Также оно дает нам несколько советов о том, как это в принципе можно было бы пережить.

Первый намек на возможный конец Вселенной приходит к нам из термодинамики, науке о тепле. Термодинамика - это такой проповедник физики с дикими глазами, который держит картонный транспарант с простым предупреждением: «Тепловая смерть грядет».

Несмотря на свое название, тепловая смерть Вселенной не представляется огненным адом. Напротив, это смерть всех уровней тепла. Звучит не очень страшно, но тепловая смерть - это хуже, чем запечься до корочки. Это потому, что почти все в повседневной жизни требует определенных разниц температур, прямо или косвенно.

К примеру, ваш автомобиль работает, потому что внутри двигателя он теплее, чем снаружи. Компьютер работает на электричестве от местной электростанции, которая, вероятно, работает путем нагрева воды и отвода тепла к турбине. Вы питаетесь едой, которая своим существованием обязана гигантской разнице температур между Солнцем и остальной частью Вселенной.

Когда Вселенная достигнет тепловой смерти, везде будет одна температура. Это означает, что ничего интересного больше никогда не произойдет. Все звезды умрут, вся материя распадется, все превратится в редкий бульон из частиц и излучения. Даже энергия этого бульона будет уменьшаться с течением времени в результате расширения Вселенной, оставляя все с температурой едва ли выше абсолютного нуля.

В этом процессе Большого Замерзания Вселенная станет равномерно холодной, мертвой и пустой.

После разработки теории термодинамики в начале 1800-х годов, тепловая смерть выглядит как единственным возможным путем конца Вселенной. Но через 100 лет общая теория относительности Эйнштейна провозгласила, что у Вселенной может быть куда более интересная судьба.

Общая теория относительности говорит, что материя и энергия искривляют пространство и время. Это отношение между пространством-временем и материей-энергии - между сценой и актерами на ней - распространяется на всю Вселенную. Все, что есть во Вселенной, по мнению Эйнштейна, определяет конечную судьбу самой Вселенной.

Теория предсказывает, что Вселенная в целом должна либо расширяться, либо сжиматься. Она не может оставаться в прежнем размере. Эйнштейн понял это в 1917 году и так не хотел это признавать, что отказался от собственной теории.

Тогда в 1929 году американский астроном Эдвин Хаббл обнаружил неопровержимые доказательства того, что Вселенная расширяется. Эйнштейн изменил свое мнение, назвав свою предыдущую настойчивость относительно статической Вселенной «величайшей ошибкой» своей карьеры.

Если Вселенная расширяется, когда-то она должна была быть меньше, чем сейчас. Понимание этого привело к появлению теории Большого Взрыва: идеи о том, что Вселенная началась с невероятно малой точки и быстро расширилась. Мы можем увидеть это по «послесвечению» Большого Взрыва - в качестве космического микроволнового фона - постоянного потока радиоволн, идущих со всех направлений в небе.

Получается, судьба Вселенной зависит от очень простого вопроса: будет ли Вселенная расширяться дальше и как быстро?

Для Вселенной, содержащей обычную «начинку» - материю и свет, - ответ на вопрос зависит от количества этой начинки. Больше начинки - значит, больше гравитации, которая стягивает все назад и замедляет расширение. Пока количество начинки не превосходит критический порог, Вселенная будет расширяться вечно и в конечном итоге умрет тепловой смертью.

Но если начинки будет слишком много, расширение Вселенной замедлится и остановится. Тогда Вселенная начнет сжиматься. Сокращающаяся Вселенная будет становиться все меньше и меньше, плотнее и горячее, пока все не закончится в красочном компактном аду, противоположном Большому Взрыву и известном как Большое Сжатие.

На протяжении большей части 20 века астрофизики не были уверены, какой из этих сценариев возымеет действие. Большое Замерзание или Большое Сжатие? Лед или огонь? Они пытались провести космическую перепись, подсчитав количество начинки в нашей Вселенной. Оказалось, что мы до странного близко находимся к критическому порогу, и наша судьба остается под вопросом.

В конце 20 века все изменилось. В 1998 году две соперничающих группы астрофизиков сделали невероятное заявление: расширение вселенной ускоряется.

Обычная материя и энергия не могли бы повлиять на Вселенную таким образом. Это стало первым свидетельством существования нового фундаментального вида энергии, « », поведение которой совершенно загадочно для нас.

Темная энергия расталкивает Вселенную в стороны. Мы пока не понимаем, что это такое, но порядка 70% энергии Вселенной приходится на темную энергию, и это число растет день ото дня. Существование темной энергии означает, что количество начинки во Вселенной не определяет ее конечную судьбу. Космосом управляет темная энергия, она ускоряет расширение Вселенной. Следовательно, сценарий Большого Сжатия маловероятен.

Но это не означает, что и Большое Замерзание неизбежно. Есть и другие возможные исходы.

Один из них произошел не в процессе изучения космоса, а из мира субатомных частиц. Это, пожалуй, наиболее странная из возможных судеб Вселенной: что-то фантастическое и при этом вероятное.

В классическом научно-фантастическом романе Курта Воннегута «Колыбель для кошки», «лед-девять» представляет собой новую форму водяного льда с интересными свойствами: он образуется при температуре 46 градусов, а не 0. Если кристалл льда-девять уронить в стакан с водой, вода вокруг кристалла примет его форму, так как его энергия ниже, чем у жидкой воды. Новые кристаллы льда-девять будут проделывать то же самое с водой вокруг себя, и в мгновение ока цепная реакция превратит всю воду в стакане - или в океанах Земли - в твердый лед-девять.

То же самое может случиться в реальной жизни с нормальным льдом и нормальной водой. Если вы наберете в очень чистый стакан очень чистой воды и охладите ее ниже нуля градусов, вода станет переохлажденной: она будет оставаться жидкой ниже естественной точки замерзания. В воде нет никаких примесей, а в стакане нет неровностей, чтобы начал образовываться лед. Но если вы уроните кристалл льда в воду, вода быстро замерзнет, как лед-девять.

Лед-девять и переохлажденная вода могут показаться мало связанными с судьбой Вселенной. Но что-то похожее происходит с самим пространством. Квантовая физика гласит, что даже в абсолютном вакууме присутствует небольшое количество энергии. Но тогда должен существовать другой тип вакуума, содержащий меньше энергии. Если это так, тогда вся Вселенная похожа на стакан с переохлажденной водой. И будет оставаться таковой, пока не покажется «пузырь» вакуума с низкой энергией.

К счастью, мы не знаем таких пузырей. К несчастью, квантовая физика утверждает, что если низкоэнергетический вакуум возможен, пузырь с таким вакуумом неизбежно появится где-то во Вселенной. Когда это произойдет, то подобно истории со льдом-девять новый вакуум «преобразует» старый вакуум вокруг себя. Пузырь будет расти со скоростью света, и мы никогда не увидим его приближения. Внутри пузыря все будет совершенно другим и явно не гостеприимным. Свойства фундаментальных частиц вроде электронов и кварков могут быть совершенно другими, переписывающими правила химии и, возможно, препятствующими образованию атомов. Люди, планеты и даже сами звезды могут быть уничтожены в процессе этого Большого Изменения. В работе 1980 года физики Сидни Коулман и Франк де Люччия назвали его «глобальной экологической катастрофой».

После Большого Изменения и темная энергия будет вести себя по-другому. Вместо того чтобы подталкивать расширение Вселенной, темная энергия может внезапно свернуть Вселенную саму в себя, заставив ее коллапсировать в Большом Сжатии.

Есть и четвертая возможность, и опять темная энергия занимает центральное место. Эта идея очень спорная и невероятная, но не стоит сбрасывать ее со счетов. Темная энергия может быть намного мощнее, чем мы думаем, и сама по себе привести Вселенную к концу без всяких Больших Изменений, Замерзаний и Сжатий.

У темной энергии есть своеобразное свойство. Когда Вселенная расширяется, ее плотность остается постоянной. Это означает, что со временем она разрастается, чтобы идти в ногу с увеличением объема Вселенной. Это необычно, хотя и не нарушает законы физики.

Тем не менее все может быть намного страннее. Что, если плотность темной энергии увеличивается по мере расширения Вселенной? Точнее, что, если количество темной энергии во Вселенной увеличивается быстрее, чем расширяется сама Вселенная?

Эту идею выдвинул Роберт Колдуэлл из Дартмутского колледжа в Ганновере, Нью-Гемпшир. Он назвал это «фантомной темной энергией». И она приводит нас к невероятно странной судьбе Вселенной.

Если фантомная темная энергия существует, тогда нас ждет темная сторона силы, выражаясь языком «Звездных войн». Сейчас плотность темной энергии чрезвычайно низка, намного ниже плотности материи на Земле или даже плотности галактики Млечный Путь, которая намного менее плотная, чем Земля. Однако с течением времени плотность фантомной темной энергии может нарастать и разрывать Вселенную на части. В работе 2003 года Колдуэлл и его коллеги представили сценарий под названием «космический конец света». Как только фантомная темная энергия становится более плотной, чем конкретный объект, этот объект разрывается в клочья.

Сначала фантомная темная энергия разорвет Млечный Путь, отправив его звезды в полет. Затем разорвется Солнечная система, поскольку притяжение темной энергии станет мощнее, чем притяжение Солнца относительно Земли. Наконец, за несколько минут Земля просто взорвется. Сами атомы начнут распадаться, и уже через секунду Вселенная будет разорвана. Колдуэлл называет это Большим Разрывом. Большой Разрыв, по признанию самого Колдуэлла, «весьма диковинный» сценарий.

Фантомная темная энергия бросает вызов фундаментальным идеям Вселенной, вроде допущения о том, что материя и энергия не могут двигаться быстрее скорости света. Это хорошие аргументы против Большого Разрыва. Наблюдения за расширением Вселенной, а также эксперименты с физикой частиц показывают, что в качестве конца света более вероятно Большое Замерзание, за которым последует Большое Изменение, а затем и Большое Сжатие.

Но это довольно мрачный портрет будущего - века холодной пустоты, которые ждут вакуумного распада и финального взрыва, переходящего в небытие. Есть ли какой-нибудь другой вариант? Или мы обречены?

Очевидно, конкретно у нас нет причин переживать о конце Вселенной. Все эти события произойдут через триллионы лет в будущем, за исключением разве что Большого Изменения, так что пока все идет по плану. Также нет причин беспокоиться за человечество. Если не случится иное, генетический разрыв изменит наших потомков до неузнаваемости задолго до этого. Однако смогут ли разумные существа любого вида, люди или нет, выжить в принципе?

Физик Фримен Дайсон из Института перспективных исследований в Принстоне, Нью-Джерси, рассмотрел этот вопрос в классической работе 1979 года. В то время он пришел к выводу, что жизнь сможет изменить себя, чтобы пережить Большое Замерзание, которое, как считал физик, будет менее проблемным, чем ад Большого Сжатия. Но в наши дни он менее оптимистичен, благодаря открытию темной энергии.

«Если Вселенная ускоряется, это плохие новости, - говорит Дайсон. Ускоренное расширение означает, что мы в конечном итоге потеряем контакт со всем, кроме горстки галактик, что резко ограничит количество доступной нам энергии. - В долгосрочной перспективе такая ситуация будет весьма печальной».

Однако положение вещей может измениться. «Мы на самом деле не знаем, будет ли расширение продолжаться и почему оно ускоряется, - говорит Дайсон. - Оптимистичный взгляд на вещи состоит в том, что ускорение будет замедляться по мере расширения Вселенной. Если это произойдет, будущее будет более благоприятным».

Но что, если расширение не будет замедляться или станет известно, что грядет Большое Изменение? Некоторые физики предлагают решение, безумное в принципе. Чтобы избежать конца Вселенной, мы должны построить собственную Вселенную в лаборатории и удрать в нее.

Один из физиков, работавших над этой идее, это небезызвестный Алан Гут из Массачусетского технологического института в Кембридже; он известен своими работами на тему юной Вселенной.

«Не могу сказать, что законы физики допускают возможность такого, - говорит Гут. - Если это возможно, потребуются технологии, выходящие за пределы всего, что мы можем представить. Это потребует гигантского количества энергии, которую еще нужно будет добыть и удержать».

Первый шаг, по мнению Гута, заключается в создании невероятной плотной формы материи - такой плотной, что она будет на грани коллапса в . Если сделать это правильно, а затем быстро убрать материю за пределами этого сгустка, можно получить регион пространства, который начнет быстро расширяться.

По сути, вы провоцируете скачок создания совершенно новой Вселенной. По мере расширения области пространства, граница будет сокращаться, создавая пузырь искривленного пространства внутри чего-то большего. Фанатам «Доктора Кто» это может показаться знакомым, и по словам Гута, TARDIS это довольно точная аналогия того, о чем идет речь. В конце концов, «снаружи» сожмется до нуля, и новорожденная Вселенная начнет собственное существование, независимое от судьбы предыдущей Вселенной. Очевидно, как эта схема сработает на самом деле, совершенно непонятно. Мы даже не знаем, возможно это или нет.

Впрочем, у Гута есть другой источник надежды на лучшую судьбу для нашего мира - проблеск надежды. Гут первым предположил, что в самой юности Вселенная расширилась чрезвычайно быстро за долю секунды, эта идея известна как «инфляция». Многие космологи считают, что инфляция является самым точным описанием расширения юной Вселенной, и Гут предлагает создать новую Вселенную, опираясь именно на этот процесс быстрого расширения.

Инфляция имеет интригующие последствия для конечной судьбы Вселенной. Согласно этой теории, наша Вселенная - это малая часть мультивселенной, множества карманных вселенных, которые плавают вокруг.

«В таком случае, даже если мы убедимся, что наша отдельная Вселенная умрет в процессе замерзания, мультивселенная будет жить вечно, и новая жизнь будет рождаться в каждой отдельной карманной Вселенной, - говорит Гут. - Мультивселенная воистину бесконечная, а в бесконечном будущем отдельные Вселенные могут жить и умирать сколько им вздумается».

В общем, ничего хорошего нас не ждет.

Один из важнейших фактов, надежно установленных астрофизикой, сам факт эволюции Вселенной, ее направленное развитие вместо рисовавшихся ранее вечно повторяющихся процессов на неизменной в среднем "сцене". Вселенная расширяется, ее самые крупные структурные единицы - скопления галактик - удаляются друг от друга, и средняя плотность вещества уменьшается. Около 15 миллиардов лет назад эта плотность была необычайно велика, не было отдельных небесных тел, и вся материя представляла собой быстро расширяющуюся очень горячую плазму.

Теоретическая астрофизика, воссоздала картину первых минут после начала расширения Вселенной, когда в Плазме при температуре миллиард градусов происходили процессы синтеза легких химических элементов. То, что картина воссоздана точно, сейчас уже не вызывает сомнений, один из неотвратимых аргументов "за" - наблюдаемое сейчас соотношение между количеством гелия и водорода. Успехи физики элементарных частиц позволяют заглянуть в еще более горячее прошлое, когда температуры достигали 10 28 К, а время от начала расширения составляло 10 -35 секунды.

Мы изучаем прошлое, чтобы лучше понять настоящее и будущее, а близкое и отдаленное будущее человечества, будущее разума во многом зависит от будущего природы, от судеб Земли, Солнца, Галактики, Вселенной.

Изучение будущего Вселенной принципиально отличается от изучения прошлого. Прошлое оставило свои следы, и, обнаруживая их, мы проверяем правильность своих представлений. Картины будущего - это всегда экстраполяция - прямая проверка здесь невозможна. И тем не менее сегодня фундамент физических и астрофизических знаний настолько прочен, что позволяет с достаточной уверенностью рассматривать отдаленное будущее Вселенной. Этому посвящено уже немало работ, они и легли в основу нашего рассказа.

Прежде всего, конечно, возникает вопрос: неограниченно ли будет продолжаться расширение Вселенной? Ответ в принципе прост: если плотность материи во Вселенной достаточно велика, то силы тяготения в итоге остановят ее расширение, и оно сменится сжатием. Если плотность мала, то сил тяготения недостаточно, чтобы остановить расширение. Астрофизические наблюдения показывают, что средняя плотность видимого вещества во Вселенной примерно в 30 раз меньше критического значения (около 10 -29 г/см3 при современной скорости расширения), отделяющего один вариант будущего от другого.

Предположим сначала первый вариант - Вселенная расширяется неограниченно. Какие же процессы произойдут в этой неограниченно расширяющейся Вселенной? Первый из таких процессов сейчас ни у кого не вызывает сомнений - звезды погаснут. Солнце закончит свою активную эволюцию через несколько миллиардов лет и превратится в белый карлик размером с Землю, который будет постепенно остывать (см. цветную вкладку). Звезды массивнее Солнца проживут еще меньше п в зависимости от массы в конце концов превратятся либо в нейтронные звезды с поперечником всего в десятки километров, либо в черные дыры - объекты со столь сильным гравитационным полем, что оно не выпускает даже свет. Наконец, возможен катастрофический взрыв в конце "жизненного пути" звезды с полным ее разрушением. Звезды менее массивные, чем Солнце, живут дольше, но и они рано или поздно превращаются в остывшие карлики. В наше время возникают и новые звезды из межзвездной среды (по мнению академика В. А. Амбарцумяна, звезды возникают из сверхплотных тел). Настанет время, когда необходимые запасы ядерной энергии и вещества будут исчерпаны, новые звезды рождаться не будут, а старые превратятся в холодные тела или черные дыры. Звездная эра эволюции Вселенной закончится через 10 14 лет. Этот срок огромен, он в 10 тысяч раз больше времени, прошедшего от начала расширения Вселенной до наших дней.

А теперь о судьбах галактик. Звездные системы - галактики - состоят из сотен миллиардов звезд. В центрах галактик, вероятно, находятся сверхмассивные черные дыры, о чем свидетельствуют бурные процессы вокруг них, наблюдаемые астрофизиками. Для будущего галактик существенны очень редкие в наше время события, когда какая-либо звезда приобретает большую скорость в результате гравитационного взаимодействия с другими звездами и превращается в межгалактического странника. Звезды постепенно будут покидать галактику, а ее центральная часть будет понемногу сжиматься. Конечный этап - это сверхмассивная черная дыра, поглотившая остатки звезд центральной части галактики, и рассеивание примерно 90 процентов всех звезд в пространстве. Процесс разрушения галактик закончится примерно через 10 19 лет, все звезды к этому времени давно погаснут и потеряют право именоваться звездами.

Для дальнейших процессов определяющей является предсказываемая современной физикой нестабильность ядерного вещества. Имеется в виду, что протон хотя и очень долго живущая, но все же нестабильная частица. Среднее время его жизни оценивается примерно в 10 32 лет. Конечный продукт распада протона - один позитрон, излучение в виде фотонов, нейтрино и, возможно, одна или несколько электронно-по-зитронных пар. Хотя распад протона еще не наблюдался непосредственно, мало кто из физиков сомневается в неизбежности такого процесса. Нейтроны тоже нестабильны - в составе ядра они распадаются подобно протону, а в свободном состоянии в среднем за 15 минут распадаются на протон, электрон и антинейтрино.

Итак, примерно через 10 32 лет (обозначим это время как T r) ядерное вещество полностью распадется. Нораспад ядерного вещества уже задолго до этого срока начнет играть важную роль в эволюции Вселенной. Позитроны, возникающие при распаде нуклонов (это общее название протонов и нейтронов), аннигилируют с электронами, превращаясь в фотоны, которые вместе с фотонами, прямо возникающими при распаде нуклона, нагревают вещество. Только нейтрино свободно покидают звезду и уносят около 30 процентов всей энергии распада. Процесс распада будет поддерживать температуру умерших звезд и планет на уровне хоть и низком, но все же заметно отличном от абсолютного нуля. Так, белые карлики, остыв за 10 17 лет до температуры 5 К, будут потом сохранять эту температуру из-за выделения энергии при распаде вещества внутри них. Нейтронные звезды остывают за 10 19 лет до температуры около 100 К, после чего распад вещества в них будет поддерживать эту температуру (см. нижний график на цветной вкладке; изменение массы М, радиуса R и температуры Т умерших звезд в ходе распада ядерного вещества показано в сравнении с их начальными параметрами М 0 , R 0 и Т 0 , нейтронные звезды после уменьшения массы М примерно в 10 раз, то есть при М/М 0 ~0,1, взрываются).

Спустя 10 32 лет (T r) все ядерное вещество полностью распадется, звезды и планеты превратятся в фотоны и нейтрино.

Несколько иная судьба у рассеянного в пространстве газа, который останется после разрушения галактик (по массе он может составить около процента всего вещества Вселенной). Ядерное вещество этого газа тоже, разумеется, распадется через тр лет. Однако в этом случае позитроны, возникающие при распаде, уже не будут аннигилировать с электронами - из-за крайней разреженности газа вероятность встречи частиц чрезвычайно мала, и в результате образуется разреженная электронно-позитронная плазма.

К этому времени (T r) останутся еще черные дыры, возникшие из массивных звезд после их угасания, и сверхмассивные черные дыры, образовавшиеся в центрах галактик, о их судьбе мы скажем немного позже.

Что же будет происходить со Вселенной после распада ядерного вещества? В ту далекую эпоху во Вселенной будут присутствовать фотоны, нейтрино, электронно-пози-Тронная плазма и черные дыры. Основная часть массы окажется сосредоточенной в фотонах и нейтрино - начнется эра излучения.

С расширением Вселенной плотность массы излучения (фотонов и нейтрино) падает пропорционально четвертой степени размера (например, среднего расстояния между частицами), так как меняется и плотность числа частиц обратно пропорционально объему (куб размера) и энергия каждого кванта (а значит, и его масса) обратно пропорционально этому размеру. В отличие от излучения средняя плотность материи в виде электронно-позитронной плазмы и черных дыр убывает только из-за уменьшения их концентрации, то есть пропорционально кубу размера. Значит, плотность этих видов материи убывает медленнее, чем плотность излучения. Поэтому через время порядка 10 T r плотность материи уже будет определяться главным образом массой, заключенной в черных дырах (ее гораздо больше, чем в электронно-позитронной плазме). На смену эре излучения придет эра черных дыр.

Но и черные дыры не вечны. В поле тяготения вблизи черной дыры происходит рождение частиц, причем у черных дыр с массой порядка звездной и больше возникают кванты излучения. Такой процесс ведет к уменьшению массы черной дыры, она постепенно превращается в излучение - в фотоны, нейтрино), гравитоны. Но процесс этот чрезвычайно медленный, скажем, черная дыра с массой в 10 масс Солнца испарится за 10 69 лет, а сверхмассивная черная дыра, масса которой еще в миллиард раз больше, - за 10 69 лет. И все же постепенно все черные дыры превратятся в излучение, и оно вновь станет доминирующим по массе во Вселенной - снова наступит эра излучения. Однако вследствие расширения Вселенной плотность излучения, как уже говорилось, падает быстрее плотности электронно-позитронной плазмы, и через 10100 лет станет доминирующей именно эта плазма - кроме нее, во Вселенной не останется практически ничего.

На первый взгляд картина эволюции Вселенной в отдаленном будущем выглядит весьма пессимистически. Это картина постепенного распада, деградации, рассеяния.

К возрасту Вселенной 10 100 лет в мире останутся практически только электроны и позитроны, рассеянные в пространстве с ужасающе ничтожной плотностью: одна частица приходится на объем, равный 10 185 объемам всей видимой сегодня Вселенной. Означает ли это, что в будущем замрут все процессы, не будет происходить активных движений физических форм материи, невозможно будет существование каких-либо сложных систем, а тем более разума в какой бы то ни было форме? Нет, такой вывод был бы неверен. Конечно, с нашей сегодняшней точки зрения все процессы в будущем будут чрезвычайно замедлены, но ведь и пространственные масштабы тогда будут иными. Напомним, что в самом начале расширения Вселенной, когда температура была, например, 10 28 К и происходили процессы рождения вещества, текли бурные реакции, продолжительность которых исчислялась 10 -35 с, а пространственные масштабы были порядка 10 25 см. В подобных масштабах сегодняшние события во Вселенной, в том числе и наша жизнь, это нечто невероятно медленное, и чрезвычайно растянутое в пространстве По мнению известного американского физика Дайсона, в любом отдаленном будущем возможны будут сложные формы движения материи и даже разумная жизнь правда, в непривычных для нас формах и "пульс жизни будет биться все медленнее, но никогда не остановится".

Добавим к этому следующее: пока у нас речь шла о процессах, которые вытекают из надежно установленных физических законов, однако в будущем возникнут физические условия, недоступные нам в эксперименте (сверхнизкие температуры, малые плотности и т. д.), и вполне возможно проявление сил, возникновение процессов, совершенно нам пока неизвестных. А эти силы и процессы могут в корне изменить ситуацию.

Вот один из таких возможных процессов - распад вакуума, его превращение в расширяющейся Вселенной в реальное вещество. В прошлом, в упоминавшуюся уже эпоху 10 -35 секунды после начала расширения, - вакуум, вероятно, уже распадался, порождая частицы и античастицы больших энергий. Эта энергия соответствовала температуре 10 28 К, а плотность вещества составляла 10 75 г/см3. В современном вакууме (в том, что в просторечии называется пустотой) тоже, возможно, заключена некоторая плотность энергии. Но она если и есть, то очень мала и соответствует плотности массы не более чем 10 -28 г/см3, а может быть даже существенно меньше. Обнаружить такую плотность даже в астрономических наблюдениях крайне трудно. Теория полагает вероятным, что плотность массы вакуума в далеком будущем скачком перейдет в реальные частицы и античастицы, давая начало новым физическим процессам. Родившееся при этом вещество будет, конечно, разреженным, но все же несравненно более плотным, чем оставшееся к тому времени рассеянное вследствие расширения Вселенной "наше" вещество. Подобный "фазовый переход" вакуума может быть чрезвычайно существенным для судеб Вселенной. Так, в принципе этот переход может остановить расширение Вселенной и сменить его сжатием. Ясно, что при этом вся нарисованная нами картина будущего Вселенной изменится в корне.

И еще одно замечание. Речь шла о будущем Вселенной с учетом того, что нейтрино всех сортов представляют собой излучение,- предполагалось, что эти частицы подобно фотонам имеют массу только потому, что всегда движутся со световой скоростью, а их масса покоя равна нулю. В современной физике считается весьма вероятным, что масса покоя нейтрино хоть и очень мала, но не нулевая.

Влияния этого факта на судьбы Вселенной могут быть двоякого рода. Если масса покоя нейтрино очень мала, скажем, в сотни тысяч раз меньше массы электрона, то тяготение, создаваемое этой частицей в масштабах Вселенной, тоже очень мало и не оказывает никакого действия на темпы расширения. Однако в отдаленном будущем плотность массы нейтрино будет падать не как плотность массы фотонов (которая, как мы помним, обратно пропорциональна четвертой степени размера), а как плотность массы обычных частиц (обратно пропорционально кубу размера) и в электронно-позитронной плазме будет постоянная малая примесь нейтрино (и антинейтрино), имеющих массу покоя. Если же окажется, что масса покоя нейтрино близка к предсказываемому верхнему возможному пределу (примерно 0,00005 массы электрона), то суммарная масса всех этих частиц во Вселенной получится чрезвычайно большой, а средняя плотность вещества превысит критическую (10 -29 г/см3), и в будущем тяготение нейтрино остановит расширение Вселенной. Это может случиться гораздо раньше, чем распадется все ядерное вещество, и даже раньше, чем погаснут. все звезды. Тогда в будущем Вселенную снова ожидает сверхгорячая фаза со сверхбурными физическими процессами.

Как видите, в любом возможном сценарии эволюции Вселенной ее будущее представляется захватывающе интересным и многообразным. Но, конечно же, серьезные изменения во Вселенной (по сравнению с нынешним ее состоянием) во всех случаях могут начаться очень нескоро, не только в житейских, но и астрономических масштабах, как минимум через десятки, а может быть, тысячи миллиардов лет. Это во много раз больше нынешнего возраста видимой нами Вселенной, которой никак не больше 10 - 15 миллиардов лет от начала расширения.

Какой будет Вселенная через 10 100 лет? При ее неограниченном расширении все протоны распадутся,
галактики превратятся в черные дыры, а сами черные дыры «испарятся». Если Вселенная в будущем коллапсирует, то процессы ее расширения и сжатия могут циклически повторяться…

В последние годы успехи в изучении взаимодействий элементарных частиц при высоких энергиях способствовали значительному прогрессу в космологии. Попытки описать все основные силы природы как различные проявления одной фундаментальной силы частично оказались успешными в так называемых объединенных теориях взаимодействия элементарных частиц.

Такие теории позволяют хотя бы приближенно описать основные физические процессы в температурном интервале, начиная от крайне низких температур, близких к абсолютному нулю, до температур порядка 10 32 К. Они дают возможность составить общее представление о свойствах материи при плотностях, представляющих космологический интерес - от значений меньше 10 -300 г/см 3 до величин, превышающих 10 100 г/см 3 . Экстремальные условия, свойственные границам указанных интервалов, могут преобладать либо на очень ранних, либо на самых поздних стадиях эволюции Вселенной.

Сравнительно недавно несколько физиков и космологов, в том числе и авторы настоящей статьи, попробовали экстраполировать процесс развития Вселенной в далекое будущее, вплоть до того времени, когда ее возраст достигнет 10 100 лет.

Теория Большого взрыва

В основе метода экстраполяции лежит модель Большого взрыва. Согласно этой модели, началом расширения Вселенной послужил взрыв исключительно плотного компактного образования, произошедший
10-20 млрд. лет назад. В настоящее время считается общепризнанным, что эволюцию Вселенной определили первые моменты с начала ее расширения.

Использование терминологии, связанной со взрывом, объясняется тем, что материя и энергия в наблюдаемой Вселенной представляются как бы разлетающимися в пространстве. Правда, термин «Большой взрыв» не совсем удачный, поскольку ассоциируется с наблюдением взрыва как бы со стороны. Наблюдать же «со стороны» взрывное расширение Вселенной, включающей в себя все сущее, в прин-
ципе невозможно.

Само пространство тоже расширяется в том смысле, что все галактики удаляются друг от друга со скоростями, пропорциональными расстоянию между ними. Наблюдателю, находящемуся в нашей Галактике, другие галактики представляются «разбегающимися» от него. Чем дальше галактика, тем с большей скоростью она удаляется от нас. С увеличением расстояния на 1 млн. световых лет эта скорость возрастает на 17 км/с. Математической основой модели Большого взрыва являются уравнения общей теории относительности Эйнштейна.

Примерно через три минуты после начала расширения Вселенной ядерные реакции привели к синтезу гелия, а также других легких элементов, хотя и в гораздо меньших количествах. Однако Вселенная охладилась слишком быстро, для того чтобы успели образоваться углерод и другие более тяжелые элементы. Поэтому значительная часть водорода сохранилась и послужила ядерным горючим для звезд.

Наблюдаемый избыток вещества по сравнению с антивеществом, возможно, обусловлен реакциями, протекавшими всего через 10 ~ 38 с. после начала расширения. Именно на основе этого предположения большинство объединенных теорий взаимодействия элементарных частиц предсказывают возможность
распада любой ядерной материи.

Из-за недостаточности наших представлений о самых ранних стадиях расширения Вселенной пока нельзя ответить на важнейший вопрос космологии: будет ли Вселенная постоянно расширяться или силы гравитации остановят ее расширение и увлекут пространство и время вновь к состоянию изначального
«огненного шара» ?

Поскольку с помощью экспериментов и наблюдений пока не удается решить вопрос о замкнутости Вселенной, при прогнозировании ее далекого будущего приходится принимать во внимание обе возможности - и ее замкнутость, и открытость.

Открытая Вселенная

Сначала предположим, что критическая плотность не достигается и Вселенная открыта. Что произойдет с ее крупномасштабной структурой (т.е. каково будущее геометрических свойств Вселенной) и локальными образованиями (от протонов до галактик) ?

Согласно современным представлениям, эволюция локальных образований открытой Вселенной должна пройти шесть основных этапов.

  • Первый из них займет 10 14 лет после Большого взрыва. За это время у всех звезд выгорит их «горючее». Основным ядерным горючим на протяжении почти всей жизни звезды является водород, который в ее недрах превращается в гелий. После того как большая часть водородного горючего исчерпана, размеры
    звезды быстро увеличиваются в несколько раз, и она становится красным гигантом. На этой стадии гелий превращается в углерод и другие более тяжелые элементы.

Термоядерные реакции в этих процессах «работают» в таком направлении: водород превращается в гелий, гелий в углерод, а углерод в более тяжелые элементы. Эта последовательность превращений обычно
завершается образованием железа. Ядра железа имеют самую низкую полную энергию на единицу массы по
сравнению с указанными элементами, так что при достижении «железного предела» энергия ядерного горючего Вселенной полностью исчерпывается.

  • Второй этап эволюции Вселенной состоит в потере всеми звездами своих планет. Если к звезде, вокруг которой обращается планета (или планеты), приблизится другая звезда на расстояние, не превышающее радиус планетной орбиты, то последняя будет сильно изменена гравитационным полем приблизившейся звезды и планета может улететь в межзвездное пространство. Средний промежуток времени, в течение которого возможна подобная встреча, зависит от концентрации звезд в данной области пространства, радиуса планетных орбит и от скорости сближения звезд.

Концентрацию звезд в пространстве можно оценить по объему, в котором содержится по крайней мере одна звезда. Звезда с обращающейся вокруг нее планетой «заметает» в пространстве цилиндр, размер которого зависит от размера орбиты планеты и от скорости звезды.

Средний интервал времени между звездными сближениями равен времени, необходимому для того, чтобы объем этого цилиндра стал равен объему, содержащему по крайней мере одну звезду. Концентрация звезд в типичной галактике равна примерно одной звезде на 35 кубических световых лет пространства.

По оценке Ф. Дайсона (Институт высших исследований в Принстоне, США), средний радиус орбиты планеты примерно равен 100 млн. км, а скорость движения звезды в пространстве составляет 50 км/с. Объем цилиндра, «заметаемого» движущейся планетной системой, окажется по прошествии 10 15 лет равным 35 кубическим световым годам, поэтому встреча с другой звездой в течение этого промежутка времени вполне возможна.

На основании этого можно предположить, что примерно через 100 подобных сближений звезда лишится всех своих планет; следовательно, за время, равное 100 * 10 15 лет, т.е. за 10 17 лет, все звезды потеряют свои планеты.

  • Третий этап эволюции Вселенной - результат еще больших сближений звезд. Когда две звезды проходят близко друг от друга, гравитационное взаимодействие между ними способно передать кинетическую энергию от одной звезды к другой. При достаточно большом сближении одна из звезд может приобрести настолько высокую скорость, что «вылетит» из галактики. В силу закона сохранения
    энергии кинетическая энергия второй звезды при этом соответственно уменьшится. В итоге эта звезда приблизится к ядру галактики.

Этот этап может быть назван этапом испарения галактик. Взаимодействие звезд воспроизводит в гигантском
масштабе взаимодействие молекул, испаряющихся с поверхности жидкости. Сходный по характеру обмен энергией, возможно, приведет к тому, что не только звезды, но и значительная часть межзвездного газа также покинет галактики.

После того как примерно 90 % массы галактик испарится, гравитационное поле станет «собирать» оставшиеся звезды и вещество в ядро с возрастающей плотностью. Галактики, которые мы наблюдаем в настоящее время, по-видимому, имеют в центре сверхмассивную черную дыру - область пространства, которую не могут покинуть ни вещество, ни излучение (не принимая во внимание особый случай, связанный с законами квантовой механики).

Даже если никакой черной дыры в центре галактики не существует, плотность ее ядра, вероятно, возрастет настолько, что гравитационные силы преодолеют сопротивление, оказываемое давлением газа, и ядро катастрофически быстро сожмется (коллапсирует). В результате образуется сверхмассивная черная дыра.

Расчеты, аналогичные проведенным нами для случая потери планет звездами, показывают, что испарение звезд из галактик, сопровождающееся коллапсом последних, произойдет к тому времени, когда возраст Вселенной достигнет 10 18 лет.

  • Четвертый и пятый этапы эволюции открытой Вселенной - это космологические явления в поздних ее стадиях, предсказываемые большинством объединенных теорий взаимодействия элементарных частиц. Правда, эти явления не играют существенной роли, пока возраст Вселенной после эпохи коллапса галактик не увеличится по меньшей мере еще в 100 раз.

Если протон подвержен распаду, то процесс этот окажет существенное влияние на те звезды, которые не будут поглощены черными дырами в центре галактик. Это звезды, испарившиеся из галактик. Распад протонов и нейтронов будет поддерживать температуру звездного вещества, гораздо более высокую по сравнению с межзвездной средой.

Если предположить, что время жизни протона составляет 10 30 лет, то скорость распада в звезде размером с
Солнце должна быть порядка 10 27 протонов в год. Распад каждого протона порождает ливень энергетических электронов, позитронов, нейтрино и фотонов. Все эти дочерние частицы, за исключением нейтрино, поглощаются звездой, и поглощенная энергия поддерживает высокую температуру звездного вещества.

Точное значение температуры звезды в эпоху протонного распада можно определить следующим образом. Предположим, что интенсивность излучения звезды равна количеству тепловой энергии, выделяемой в единицу времени при распаде протонов. В этом равновесном состоянии температура зависит от массы звезды, площади поверхности, с которой излучается тепло, энергии покоя и времени жизни протона.

Вычисления показывают, что равновесная температура составляет 100 К для самых массивных «мертвых» звезд (которые, как это ни парадоксально, имеют наименьшие размеры) и примерно 3 К для больших по
размеру и менее массивных звезд.

Звезды охладятся до равновесной температуры к тому времени, когда возраст Вселенной составит 10 20 лет,
после этого их температура будет оставаться примерно постоянной до тех пор, пока большая часть протонов не распадется. Возраст Вселенной к этому времени достигнет 10 30 лет.

Интенсивность излучения звезд будет относительно невысокой, но отнюдь не ниже интенсивности фонового излучения, связанного с Большим взрывом. Температура, соответствующая фоновому излучению, зависит от свойств открытой расширяющейся Вселенной. Если плотность Вселенной меньше критической, то к тому времени, когда ее возраст достигнет 10 30 , эта температура уменьшится до 10 -20 К.

С другой стороны, если плотность в точности равна критической, то Вселенная будет расширяться медленнее и температура, соответствующая фоновому излучению, уменьшится до 10 -13 К. Таким образом, она будет на 13 - 20 порядков ниже температуры «мертвых» звезд.

  • Шестой и последний этап в эволюции открытой Вселенной - это распад черных дыр. Как следует из эйнштейновской теории гравитации, ничто - ни вещество, ни излучение - не может выйти из черной дыры. Существует граница, называемая «горизонтом событий», на которой скорость, необходимая для ухода от черной дыры, оказывается равной скорости света.

Поэтому никакая частица, находящаяся за горизонтом событий, не может приобрести скорость, достаточную для пересечения этой границы. Однако в 1974 г. С. Хокинс из Кембриджского университета (Англия) показал, что в силу законов квантовой механики черная дыра может отдать всю энергию, связанную с ее массой, в результате чего она исчезнет.

Хокинс показал, что интенсивность излучения черной дыры обратно пропорциональна квадрату ее массы.
Сначала эта интенсивность невелика, но по мере уменьшения массы черной дыры она возрастает. Отсюда следует, что все черные дыры должны в конце концов исчезнуть, иначе говоря «испаряться».

К тому времени, когда возраст Вселенной достигнет 10 100 лет, все сверхмассивные черные дыры - результат коллапса галактик - испарятся. Эти процессы испарения, в особенности их последние стадии, будут сопровождаться все более нарастающей эмиссией фотонов. Таким образом, в возрасте 10 100 лет Вселенная будет состоять из крайне разреженного газа электронов и позитронов, нейтрино и фотонов малой энергии, испущенных задолго до испарения черных дыр, а также многочисленных расширяющихся сфер, состоящих из фотонов высокой энергии, родившихся в процессе испарения черных дыр.

Замкнутая Вселенная

Все высказанные выше предположения относятся к открытой Вселенной. Попробуем заглянуть в будущее Вселенной, предположив, что существует достаточное количество несветящейся материи, для того чтобы силы гравитации остановили расширение Вселенной и привели к ее сжатию.

Чем ближе средняя плотность к критическому зна-чению, тем дольше фаза расширения замкнутой Вселенной. Однако мы не знаем таких причин, в силу которых средняя плотность была бы достаточно близкой к критической, для того чтобы Вселенная расширялась в течение времени, достаточного для распада большей части протонов.

Поэтому в фазе максимального расширения замкнутая Вселенная, как и при расширении открытой Вселенной, вероятно, будет состоять из «мертвых» звезд, сверхмассивных черных дыр - остатков галактик, а также нейтрино и фотонов малой энергии.

Основные события в фазе расширения замкнутой Вселенной происходят в той же последовательности, как и события при расширении открытой Вселенной. (Коллапс открытой Вселенной, разумеется, невозможен.) С изучением коллапса связаны работы нескольких исследователей, включая М. Риса из Кембриджского университета (Англия).

По мере увеличения энергии фотонов при сжатии Вселенной они нагревают «мертвые» звезды, что приводит к их быстрому «сгоранию», взрыву или испарению. В процессе возрастания ее плотности черные
дыры поглощают вещество и при столкновении друг с другом сливаются.

Можно рассчитать, что во Вселенной, в которой на каждую галактику приходится по одной сверхмассивной
черной дыре, «мертвые» звезды поглощаются черными дырами вскоре после того, как из них начинает испаряться вещество. Все черные дыры в конце концов сливаются в одну гигантскую черную дыру (коллапс Вселенной).

Что же ждет нашу Вселенную?

Что касается будущего Вселенной, для человека наиболее важным, по-видимому, является вопрос о будущем жизни и разума. Сможет ли разум постоянно поддерживать условия, благоприятные для жизни?

Несколько космологов, в том числе Дайсон и С. Фраучи из Калифорнийского технологического института, предпринимают в настоящее время попытки анализа путей энергообеспечения жизни в далеком будущем, а также проблем связи при освоении цивилизацией все более удаленных областей космического пространства.

Дайсон полагает, что материальными носителями жизни и сознания совсем не обязательно должны быть
только клетки с их ДНК. Существенной особенностью сознания является определенная сложность структуры, которая в принципе может быть реализована в любом «подходящем материале». Тем самым он полагает, что идея о мыслящем компьютере или о мыслящем облаке не может быть отброшена из общих соображений, как философски неприемлемая.

С учетом этих предположений, изменения космической среды, вызванные гибелью или остыванием звезд и их испарением из галактик, не обязательно будут разрушительными для систем, которые можно считать «живыми» и «разумными».

Например, энергию в принципе, можно «добывать» из гравитационного поля сверхмассивной черной дыры. Однако распад протонов и нейтронов возможно приведет к фундаментальным изменениям, ибо кажется маловероятным, что разум может быть основан на системе из электронов и позитронов. Кроме того,
если Вселенная замкнута, то условия, необходимые для жизни, могут существовать только в определенные периоды в течение каждого цикла.

В открытой Вселенной «границы жизни» иные. С испарением черных дыр наступает космический энергетический кризис, поскольку по мере расширения Вселенной оставшиеся частицы вещества и фотоны теряют свою энергию. Любая постоянная скорость потребления энергии произвольными формами жизни в конце концов окажется недостаточной.

С другой стороны, Дайсон полагает, что увеличивающиеся периоды «гибернации», во время которых энергия не потребляется, могут сопровождаться периодами ее потребления. Таким образом, для очень долгого существования цивилизаций в открытой Вселенной потенциальная возможность имеется.

Материал из Википедии - свободной энциклопедии

Бу́дущее Вселе́нной - вопрос, рассматриваемый в рамках физической космологии . Различными научными теориями предсказано множество возможных вариантов будущего, среди которых есть мнения как об уничтожении, так и о бесконечной жизни Вселенной.

После того как теория о создании Вселенной посредством Большого взрыва и её последующем быстром расширении была принята большинством учёных, будущее Вселенной стало вопросом космологии, рассматриваемым с разных точек зрения в зависимости от физических свойств Вселенной: её массы и энергии, средней плотности и скорости расширения.

Сценарии дальнейшей эволюции

Вселенная и в наши дни продолжает свою эволюцию, так как эволюционируют её части. Время этой эволюции для каждого типа объектов разнится более, чем на порядок. И когда жизнь объектов одного типа заканчивается, то у других всё только начинается. Это позволяет разбить эволюцию Вселенной на эпохи . Однако конечный вид эволюционной цепи зависит от скорости и ускорения расширения: при равномерной или почти равномерной скорости расширения будут пройдены все этапы эволюции и будут исчерпаны все запасы энергии. Этот вариант развития называется тепловой смертью.

Если скорость будет всё нарастать, то, начиная с определённого момента, сила, расширяющая Вселенную, сначала превысит гравитационные силы , удерживающие галактики в скоплениях. За ними распадутся галактики и звёздные скопления . И, наконец, последними распадутся наиболее тесно связанные звёздные системы . Спустя некоторое время, электромагнитные силы не смогут удерживать от распада планеты и более мелкие объекты. Мир вновь будет существовать в виде отдельных атомов . На следующем этапе распадутся и отдельные атомы. Что последует за этим, точно сказать невозможно: на этом этапе перестаёт работать современная физика.

Вышеописанный сценарий - это сценарий Большого разрыва .

Существует и противоположный сценарий - Большое сжатие . Если расширение Вселенной замедляется, то в будущем оно прекратится и начнётся сжатие. Эволюция и облик Вселенной будут определяться космологическими эпохами до того момента, пока её радиус не станет в пять раз меньше современного. Тогда все скопления во Вселенной образуют единое мегаскопление, однако галактики не потеряют свою индивидуальность: в них всё также будет происходить рождение звёзд, будут вспыхивать сверхновые и, возможно, будет развиваться биологическая жизнь. Всему этому придёт конец, когда Вселенная ужмётся ещё в 20 раз и станет в 100 раз меньше, чем сейчас; в тот момент Вселенная будет представлять собой одну огромную галактику.

Космологические эпохи

Введем понятие космологической декады (η) как десятичный показатель степени возраста Вселенной в годах :

\tau=10^{\eta} лет

Эпоха звёзд (6<η<14)

Нынешняя эпоха, эпоха активного рождения звёзд, закончится ровно в тот момент, когда галактики исчерпают все запасы межзвёздного газа; в это же время закончат свой путь и маломассивные звёзды - красные карлики , - полностью исчерпав свои источники горения.

Гораздо раньше потухнет Солнце. Но сначала оно превратится в красного гиганта , поглотив Меркурий и, вероятно, Венеру. Земля же, если не разделит их судьбу, раскалится настолько, что может быть похожа на нынешнюю планету COROT-7b и представлять собой сгусток лавы на дневной стороне.

Эпоха распада (15<η<39)

Если в предыдущей стадии основные объекты Вселенной - звёзды, подобные нашему Солнцу , то в эпоху распада - белые и коричневые карлики , и совсем немного нейтронных звёзд и чёрных дыр . Обычных звёзд нет вообще, они все дошли до конечного этапа своей эволюции: белые карлики, нейтронные звёзды, чёрные дыры.

Если в прошлой стадии горение водорода было самым распространённым процессом, то в эту эпоху его место в коричневых карликах, да и идет оно гораздо медленнее. Ныне главенствуют процессы аннигиляции тёмной материи и распад протонов.

Галактики также сильно отличаются от нынешних: все звёзды уже неоднократно сталкивались друг с другом. Да и размер галактик значительно больше: все галактики, входящие в состав локального скопления, слились в одну.

Эпоха чёрных дыр (40<η<100)

На этом этапе фактически всё вещество представляет собой море элементарных частиц. И лишь в некоторых уголках Вселенной продолжают жить нейтронные звёзды. На первый план выходят чёрные дыры.

За предыдущие декады они аккрецировали на себя вещество. В эту эпоху они только излучают. Основных механизмов тут два: столкновение двух чёрных дыр и последующее слияние высвобождает значительную гравитационную энергию, образуются гравитационные волны. Вторым механизмом является излучение Грибова-Хокинга : благодаря своей квантовой природе, некоторым фотонам удаётся пробираться за горизонт событий. Вместе с фотоном чёрная дыра теряет и массу, а потеря массы ведет к ещё большему потоку фотонов. В какой-то момент гравитация больше не может удерживать фотоны света под горизонтом событий, и чёрная дыра взрывается, выкидывая последние остатки фотонов .

Однако возможен и другой сценарий. Чёрные дыры могут образовывать свои скопления и сверхскопления, и точно также они будут сливаться. В итоге образуется гигантская чёрная дыра, которая будет жить фактически вечно. Возможно, под действием гравитации она разогреется до Планковской температуры и достигнет Планковской плотности и станет причиной очередного Большого взрыва , дав начало новой Вселенной.

Эпоха вечной тьмы (η>101)

Это время уже без каких-либо источников энергии. Сохранились только остаточные продукты всех процессов, происходящих в прошлых декадах: фотоны с огромной длиной волны, нейтрино, электроны, позитроны и кварки. Температура стремительно приближается к абсолютному нулю. Время от времени позитроны и электроны образуют неустойчивые атомы позитрония , долгосрочная судьба их - полная аннигиляция .

См. также

Напишите отзыв о статье "Будущее Вселенной"

Примечания

Литература

  • Зельдович Я. Б., Новиков И. Д., Строение и эволюция Вселенной, М.,1975.

Ссылки

  • . Robert R. Caldwell, Marc Kamionkowski, Nevin N. Weinberg.
  • «Тепловая смерть» Вселенной // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М . : Советская энциклопедия, 1969-1978.
  • Baez, J., 2004, «».
  • Caldwell, R. R., Kamionski, M., and Weinberg, N. N., 2003, «» Physical Review Letters 91 .
  • Hjalmarsdotter, Linnea, 2005, «»
  • George Musser (2010). «». Scientific American 303 (3): 84–91. DOI :10.1038/scientificamerican0910-84 . PMID 20812485 .
  • Vaas, R., 2006, «» in Burdyuzha, V. (ed.) The Future of Life and the Future of our Civilization . Springer: 231-247.
  • , a BBC Radio 4 series.
  • .

Отрывок, характеризующий Будущее Вселенной

– Вам полная воля с, – сказал князь Николай Андреевич, расшаркиваясь перед невесткой, – а ей уродовать себя нечего – и так дурна.
И он опять сел на место, не обращая более внимания на до слез доведенную дочь.
– Напротив, эта прическа очень идет княжне, – сказал князь Василий.
– Ну, батюшка, молодой князь, как его зовут? – сказал князь Николай Андреевич, обращаясь к Анатолию, – поди сюда, поговорим, познакомимся.
«Вот когда начинается потеха», подумал Анатоль и с улыбкой подсел к старому князю.
– Ну, вот что: вы, мой милый, говорят, за границей воспитывались. Не так, как нас с твоим отцом дьячок грамоте учил. Скажите мне, мой милый, вы теперь служите в конной гвардии? – спросил старик, близко и пристально глядя на Анатоля.
– Нет, я перешел в армию, – отвечал Анатоль, едва удерживаясь от смеха.
– А! хорошее дело. Что ж, хотите, мой милый, послужить царю и отечеству? Время военное. Такому молодцу служить надо, служить надо. Что ж, во фронте?
– Нет, князь. Полк наш выступил. А я числюсь. При чем я числюсь, папа? – обратился Анатоль со смехом к отцу.
– Славно служит, славно. При чем я числюсь! Ха ха ха! – засмеялся князь Николай Андреевич.
И Анатоль засмеялся еще громче. Вдруг князь Николай Андреевич нахмурился.
– Ну, ступай, – сказал он Анатолю.
Анатоль с улыбкой подошел опять к дамам.
– Ведь ты их там за границей воспитывал, князь Василий? А? – обратился старый князь к князю Василью.
– Я делал, что мог; и я вам скажу, что тамошнее воспитание гораздо лучше нашего.
– Да, нынче всё другое, всё по новому. Молодец малый! молодец! Ну, пойдем ко мне.
Он взял князя Василья под руку и повел в кабинет.
Князь Василий, оставшись один на один с князем, тотчас же объявил ему о своем желании и надеждах.
– Что ж ты думаешь, – сердито сказал старый князь, – что я ее держу, не могу расстаться? Вообразят себе! – проговорил он сердито. – Мне хоть завтра! Только скажу тебе, что я своего зятя знать хочу лучше. Ты знаешь мои правила: всё открыто! Я завтра при тебе спрошу: хочет она, тогда пусть он поживет. Пускай поживет, я посмотрю. – Князь фыркнул.
– Пускай выходит, мне всё равно, – закричал он тем пронзительным голосом, которым он кричал при прощаньи с сыном.
– Я вам прямо скажу, – сказал князь Василий тоном хитрого человека, убедившегося в ненужности хитрить перед проницательностью собеседника. – Вы ведь насквозь людей видите. Анатоль не гений, но честный, добрый малый, прекрасный сын и родной.
– Ну, ну, хорошо, увидим.
Как оно всегда бывает для одиноких женщин, долго проживших без мужского общества, при появлении Анатоля все три женщины в доме князя Николая Андреевича одинаково почувствовали, что жизнь их была не жизнью до этого времени. Сила мыслить, чувствовать, наблюдать мгновенно удесятерилась во всех их, и как будто до сих пор происходившая во мраке, их жизнь вдруг осветилась новым, полным значения светом.
Княжна Марья вовсе не думала и не помнила о своем лице и прическе. Красивое, открытое лицо человека, который, может быть, будет ее мужем, поглощало всё ее внимание. Он ей казался добр, храбр, решителен, мужествен и великодушен. Она была убеждена в этом. Тысячи мечтаний о будущей семейной жизни беспрестанно возникали в ее воображении. Она отгоняла и старалась скрыть их.
«Но не слишком ли я холодна с ним? – думала княжна Марья. – Я стараюсь сдерживать себя, потому что в глубине души чувствую себя к нему уже слишком близкою; но ведь он не знает всего того, что я о нем думаю, и может вообразить себе, что он мне неприятен».
И княжна Марья старалась и не умела быть любезной с новым гостем. «La pauvre fille! Elle est diablement laide», [Бедная девушка, она дьявольски дурна собою,] думал про нее Анатоль.
M lle Bourienne, взведенная тоже приездом Анатоля на высокую степень возбуждения, думала в другом роде. Конечно, красивая молодая девушка без определенного положения в свете, без родных и друзей и даже родины не думала посвятить свою жизнь услугам князю Николаю Андреевичу, чтению ему книг и дружбе к княжне Марье. M lle Bourienne давно ждала того русского князя, который сразу сумеет оценить ее превосходство над русскими, дурными, дурно одетыми, неловкими княжнами, влюбится в нее и увезет ее; и вот этот русский князь, наконец, приехал. У m lle Bourienne была история, слышанная ею от тетки, доконченная ею самой, которую она любила повторять в своем воображении. Это была история о том, как соблазненной девушке представлялась ее бедная мать, sa pauvre mere, и упрекала ее за то, что она без брака отдалась мужчине. M lle Bourienne часто трогалась до слез, в воображении своем рассказывая ему, соблазнителю, эту историю. Теперь этот он, настоящий русский князь, явился. Он увезет ее, потом явится ma pauvre mere, и он женится на ней. Так складывалась в голове m lle Bourienne вся ее будущая история, в самое то время как она разговаривала с ним о Париже. Не расчеты руководили m lle Bourienne (она даже ни минуты не обдумывала того, что ей делать), но всё это уже давно было готово в ней и теперь только сгруппировалось около появившегося Анатоля, которому она желала и старалась, как можно больше, нравиться.
Маленькая княгиня, как старая полковая лошадь, услыхав звук трубы, бессознательно и забывая свое положение, готовилась к привычному галопу кокетства, без всякой задней мысли или борьбы, а с наивным, легкомысленным весельем.
Несмотря на то, что Анатоль в женском обществе ставил себя обыкновенно в положение человека, которому надоедала беготня за ним женщин, он чувствовал тщеславное удовольствие, видя свое влияние на этих трех женщин. Кроме того он начинал испытывать к хорошенькой и вызывающей Bourienne то страстное, зверское чувство, которое на него находило с чрезвычайной быстротой и побуждало его к самым грубым и смелым поступкам.
Общество после чаю перешло в диванную, и княжну попросили поиграть на клавикордах. Анатоль облокотился перед ней подле m lle Bourienne, и глаза его, смеясь и радуясь, смотрели на княжну Марью. Княжна Марья с мучительным и радостным волнением чувствовала на себе его взгляд. Любимая соната переносила ее в самый задушевно поэтический мир, а чувствуемый на себе взгляд придавал этому миру еще большую поэтичность. Взгляд же Анатоля, хотя и был устремлен на нее, относился не к ней, а к движениям ножки m lle Bourienne, которую он в это время трогал своею ногою под фортепиано. M lle Bourienne смотрела тоже на княжну, и в ее прекрасных глазах было тоже новое для княжны Марьи выражение испуганной радости и надежды.
«Как она меня любит! – думала княжна Марья. – Как я счастлива теперь и как могу быть счастлива с таким другом и таким мужем! Неужели мужем?» думала она, не смея взглянуть на его лицо, чувствуя всё тот же взгляд, устремленный на себя.
Ввечеру, когда после ужина стали расходиться, Анатоль поцеловал руку княжны. Она сама не знала, как у ней достало смелости, но она прямо взглянула на приблизившееся к ее близоруким глазам прекрасное лицо. После княжны он подошел к руке m lle Bourienne (это было неприлично, но он делал всё так уверенно и просто), и m lle Bourienne вспыхнула и испуганно взглянула на княжну.
«Quelle delicatesse» [Какая деликатность,] – подумала княжна. – Неужели Ame (так звали m lle Bourienne) думает, что я могу ревновать ее и не ценить ее чистую нежность и преданность ко мне. – Она подошла к m lle Bourienne и крепко ее поцеловала. Анатоль подошел к руке маленькой княгини.
– Non, non, non! Quand votre pere m"ecrira, que vous vous conduisez bien, je vous donnerai ma main a baiser. Pas avant. [Нет, нет, нет! Когда отец ваш напишет мне, что вы себя ведете хорошо, тогда я дам вам поцеловать руку. Не прежде.] – И, подняв пальчик и улыбаясь, она вышла из комнаты.

Все разошлись, и, кроме Анатоля, который заснул тотчас же, как лег на постель, никто долго не спал эту ночь.
«Неужели он мой муж, именно этот чужой, красивый, добрый мужчина; главное – добрый», думала княжна Марья, и страх, который почти никогда не приходил к ней, нашел на нее. Она боялась оглянуться; ей чудилось, что кто то стоит тут за ширмами, в темном углу. И этот кто то был он – дьявол, и он – этот мужчина с белым лбом, черными бровями и румяным ртом.

Больше всего во Вселенной нас удивляет то, как мало мы о ней знаем. И точно так же, как мы хотим знать, что происходит с нашей смертью, наука задается вопросом о том, что происходит в конце Вселенной. Научное сообщество произвело много теорий - и некоторые действительно впечатляют.

Большое сжатие

Наиболее убедительная теория о том, как началась Вселенная - это Большой Взрыв, когда вся материя сначала была в виде сингулярности, бесконечно плотной точки в бездне из ничего. Потому что-то привело к взрыву. Материя расширилась с невероятной скоростью и в конечном счете сформировала Вселенную, которую мы видим сегодня.

Большое Сжатие, как вы можете догадаться, это противоположность Большому Взрыву. Вся материя расширяется наружу к краям Вселенной под воздействием гравитации нашей вселенной. Согласно этой теории, гравитация в конечном счете замедлится и начнет сокращаться. Это сокращение вернет всю материю (планеты, звезды, галактики, черные дыры - все) обратно в центр, с которого все началось, и сожмет в сингулярность. Мы окажемся в тех же условиях, в которых была вселенная до Большого Взрыва - вся материя вселенной сожмется в бесконечно малую точку - инфинитезималь.

Однако вряд ли это произойдет, если верить тем знаниям, которые у нас сейчас есть, поскольку Вселенная расширяется все более быстрыми темпами.

Неизбежная тепловая смерть Вселенной

Думайте о тепловой смерти как о чем-то, совершенно противоположном Большому Сжатию. Гравитация не сможет преодолеть расширение, поэтому вселенная просто будет расширяться в геометрической прогрессии. Галактики будут отдаляться друг от друга как несчастные любовники, и ночь между ними будет все шире и шире.

Вселенная живет по тем же правилам, что и любая термодинамическая система, и все они в конечном счете закончат одинаково: когда тепло равномерно распределится. Грубо говоря, ветер разнесет тепло по всей Вселенной, и она станет холодной, темной и скучной. Все звезды, которые мы знаем, померкнут одна за одной, и однажды не хватит энергии зажечь новые. Вся вселенная погаснет. Материя будет, но в форме частиц, и их движение будет совершенно случайно. Вселенная будет в состоянии равновесия, и эти частицы будут отскакивать друг от друга, не обмениваясь энергией. Мы останемся «смятым окурком, плевком, в тени под скамьей, куда угол проникнуть лучу не даст. И слежимся в обнимку с грязью, считая дни, в перегной, в осадок, в культурный пласт».

Тепловая смерть из-за черных дыр

Согласно популярной теории, большая часть материи во вселенной кружится вокруг черных дыр. Достаточно взглянуть на галактики, в которых вмещается почти все, и сверхмассивные черные дыры в их центрах. Черные дыры съедают звезды и целые галактики, которые пересекают горизонт событий.

В конечной вселенной эти черные дыры в конечном итоге поглотят большую часть материи и мы останемся наедине с темной вселенной. Время от времени будет вспышка света, почти как молния, когда объект подойдет достаточно близко к черной дыре, чтобы испустить энергию, и снова все погрузится во тьму. В конечном итоге останутся только гравитационные колодцы в нигде. Массивные черные дыры поглотят меньшие и станут еще больше. Таким будет финальное состояние вселенной. Со временем черные дыры испаряются (теряют свою массу), излучая так называемое излучение Хокинга. Поэтому, когда умрет последняя черная дыра, мы останемся с равномерно распределенными субатомными частицами излучения Хокинга.

Конец времени

Если и есть что-то вечное, то это время. Вне зависимости, существует вселенная или нет, время идет своим чередом. В противном случае не было бы никакой возможности отличить один момент от следующего (хотя есть теория, что время - это всего лишь последовательность событий). Но что, если время просто застынет? Что, если не будет больше моментов? Просто одна и та же минута во времени, навсегда.

Предположим, что мы живем во Вселенной, когда никогда не закончится. С бесконечным количеством временем все, что может случиться, случится со 100-процентной вероятностью (согласно теории Пуанкаре). Этот же парадокс произойдет, если вы будете жить вечно. Вы живете бесконечное время, поэтому любое событие случится гарантированно (и произойдет бесконечное количество раз). Поэтому, если вы будете жить вечно, шанс того, что вы застынете во времени, 100-процентный. Поскольку это допущение спутало множество расчетов, которые пытались предсказать конец нашей вселенной, ученые предположили кое-что еще: само время должно однажды остановиться.

Допустим, вы будете живы, чтобы это испытать (миллиарды лет после конца Земли), но вы не сможете понять, что что-то пошло не так. Время просто остановится и все замерзнет, как снимок, как слепок, навсегда. Но и навсегда это не будет, потому что время просто не будет двигаться вперед. Это будет просто один момент времени. Вы никогда не умрете и не постареете. Это своего рода псевдобессмертие, но вы об этом никогда не узнаете.

Большой Отскок

Большой Отскок похож на Большое Сжатие, но куда более оптимистичен. Представьте себе тот же сценарий: гравитация замедляет расширение Вселенной и конденсирует все в одной точке. Согласно теории, этого сжатия может быть достаточно, чтобы начать еще один взрыв, и вселенная начнется снова. Ничто не уничтожится, но перераспределится.

Физикам не нравится это объяснение, поэтому некоторые ученые полагают, что вселенная просто не вернется обратно к сингулярности. Скорее она очень близко приблизится к этому состоянию и отскочит, подобно тому, как мяч отскакивает от пола. Большой Отскок в этом плане очень похож на Большой Взрыв и теоретически может породить новую вселенную. В этом колеблющемся цикле наша вселенная может стать первой вселенной в серии или четырехсотой. Никто не узнает об этом.

Большой Разрыв

Вне зависимости от того, как именно закончится все сущее, ученым нужно использовать слово «большой», чтобы описать этот конец. Согласно этой теории, невидимая сила под названием «темная энергия», ускоряет расширение наблюдаемой вселенной. В конце концов расширение настолько ускорится, как «Энтерпрайз» с варп-фактором девять, что вселенной не останется ничего, кроме как разорваться в ничто.

Самая страшная часть этой теории в том, что хотя большинство этих сценариев случаются после того, как сгорают звезды, Большой Разрыв должен произойти, по ранним оценкам, через 16 миллиардов лет. На этой стадии Вселенная, планеты и теоретически жизнь еще будут существовать. Этот катаклизм может сжечь ее живьем, оторвать от всего сущего и скормить космическим львам, которые живут между вселенными. Неизвестно, что будет. Но эта смерть явно более жестокая, чем медленная тепловая смерть.

Событие вакуумной метастабильности

Эта теория зависит от идеи того, что Вселенная существует в принципиально нестабильном состоянии. Если вы посмотрите на значения квантовых частиц, нетрудно догадаться, почему некоторые полагают, что наша Вселенная балансирует на грани устойчивости. Некоторые ученые предполагают, что спустя миллиарды лет Вселенная просто упадет с этой грани. Когда это случится, в какой-то момент времени во вселенной появится пузырь. Этот пузырь будет расширяться во всех направлениях со скоростью света и уничтожит все, к чему прикоснется. В конце концов этот пузырь уничтожит все во Вселенной.

Но не переживайте: вселенная все еще будет там. Законы физики будут другими, а возможно - и другая жизнь. Но во вселенной не будет ничего, чего мы не смогли бы понять.

Временной барьер

Если мы попробуем вычислить вероятности в мультивселенной (в которой есть бесконечное число вселенных), мы вернемся к проблеме, озвученной выше: все может случиться со 100-процентной вероятностью. Чтобы обойти эту проблему, ученые просто берут участок Вселенной и рассчитывают вероятности для него. Это работает, но границы, которые они очерчивают, неизбежно отрезают участок от остального мира.

Поскольку законы физики не имеют смысла в бесконечной вселенной, единственный вывод, который можно сделать, это то, что существует физическая граница, предел, за который выйти нельзя. И если верить физикам, в следующие 3,7 миллиарда лет мы пересечем этот временной барьер, и для нас вселенная закончится. Хотя куда более вероятно то, что мы просто не можем понять и описать этот принцип с нашей физической терминологией.

Этого не будет (поскольку мы живем в мультивселенной)

По сценарию мультивселенной с бесконечным количеством вселенных, эти вселенные могут возникать даже в процессе нашего существования. Они могли начать возникать даже с Большим Взрывом. Одна вселенная закончит Большим Сжатием, другая тепловой смертью, третья Большим Разрывом и так далее. Но это неважно: в мультивселенной наша вселенная - всего лишь одна из множества других. И даже если наш мир рассыпется радугой в пустоте между вселенными, большая «вселенная» останется. И поскольку в ней будет другая вселенная и существование, и жизнь, нам ничего не угрожает.

Количество новых вселенных всегда будет большем, чем старых, поэтому в теории число вселенных увеличивается.

Вечная вселенная

Долгое время считалось, что Вселенная была, есть и всегда будет. Это одна из первых концепций, которые создали люди о природе Вселенной, однако в последнее время эта теория получила новый толчок, уже серьезно подкрепленный с точки зрения физики.

Так вот, не с сингулярности Большого Взрыва начался отсчет времени, время могло существовать и раньше (за бесконечность до этого), а сингулярность и результирующий взрыв могли стать следствием столкновения двух бран (структур пространства-времени более высокого уровня бытия). В этой модели Вселенная циклична и будет продолжать расширяться и сжиматься всегда.

Мы, кстати, можем выяснить это в ближайшие 20 лет - у нас есть спутник Планк, исследовавший космос в поисках паттернов микроволнового фона, которые подскажут нам что-нибудь о происхождении Вселенной. Это долгий процесс, но он предоставит нам знания о том, с чего началась наша Вселенная, а возможно подскажет, чем она закончится.

Loading...Loading...