телевизоры. Советы пользователю. телевизоры Что означает 3д

3D телевидение становится все более доступным, новая технология для некоторых телезрителей представляется волшебным экраном, другими представляется подчас ящиком Пандоры. Что же такое современное 3D ТВ? Теперь вы cможете получить ответы на все интересующие вас вопросы.

1. Что такое 3D ТВ?

3D TВ это общее обозначение дисплейных технологий, которые позволяют при просмотре по 3D телевизору телепрограмм, фильмов, видеоматериалов, а также игр представить их в стерескопическом виде. 3D ТВ добавляет к давно существующей дисплейной технологии иллюзию третьего измерения и глубины пространства. Тогда как изображение на обычных телевизорах (2D) ограничено лишь двумя измерениями, высотой и шириной.

2. Как получают 3D изображение на обычном экране?

3D телевизор, как и кинотеатральный экран, представляя объемную картинку, отображает последовательно в одной сцене по два изображения, одно предназначено для правого глаза зрителя, другое для левого глаза. Два полноразмерных изображения, занимая весь экран, предстают наложенными друг на друга. Если смотришь на них без специальных очков, объекты одного изображения часто дублируют другое или слегка смещаются влево (или вправо) от соотвествующего объекта в другом изображении. А когда телезрители одевают специальные очки, они могут воспринимать эти два изображения, как одно объемное - 3D изображение.

Новая 3D система основывается на визуальном стереоскопическом представлении. Глаза взрослого человека располагаются друг от друга примерно в 2,5 дюймах и за счет этого видят объекты на экране под немного различающимися углами. Воспринимаемые с помощью активных очков два изображения на экране 3D телевизора объединяются в человеческом мозге, за счет чего и создается иллюзия объемного изображения.

3. Чем новая 3D технология отличается от прежней?

Многие знакомы с используемой ранее анаглифической 3D технологией, для которой нужны простые очки с разноцветными линзами (красной и голубой) для объединения двух спектрозональных изображений. Видимое в этом случае объемное изображение предстает обесцвеченным и, как правило, в более низком разрешении, чем при новой 3D технологии с попеременным чередованием показываемых кадров и использованием при просмотре активных очков.

Принципиальные усовершенствования новой 3D технологии позволяют видеть на экранах 3D телевизоров полноцветное изображение в высоком разрешении форматов 1080р или 720р.

Для наблюдения 3D изображения требуются очки с управляемыми жидкокристаллическими линзами, которые попеременно и очень быстро блокируют картинку для каждого глаза (120 раз в секунду). В таких LCD очках кроме линз есть схема управления и батарейки питания (обычно хватает на 80 и более часов). Очки синхронизируются с телевизором по инфракрасному или Bluetooth каналу.

Замечание: Любое последующее упоминание термина «3D» относится к новой полноцветной HD версии технологии, а не к старой анаглифической, если прямо не указывается иное толкование.

4. Чем 3D по телевизору отличается от 3D в кинотеатре?

Многие уже смотрели 3D фильмы в таких кинотеатрах как IMAX 3D. Этот вариант технологии отличается от домашнего 3D ТВ, но незначительно. Так, в большинстве кинотеатров используются пассивные поляризационные 3D очки. А основное различие между 3D кинотеатром и 3D телевизором – размер экрана. Дома изображение значительно меньше и занимает меньший угол поля зрения. Среди опрошенных производителей телевизоров только Panasonic рекомендует для наилучшего восприятия смотреть на экран с близкого расстояния, равного 3-х кратному размеру экрана по диагонали, получается несколько более 3 метров при 50 дюймовом экране. Однако, мы предполагаем, что расположение ближе определенно предпочтительнее при любой домашней 3D презентации и тем более игре. Маленькие экраны могут иметь другие присущие 3D проблемы, такие как сравнительно узкий угол обзора.

Основное преимущество домашнего телевизионного 3D над кинотеатральным полный контроль над происходящим. Дома вы можете выбрать удобное место перед экраном, а некоторые 3D совместимые телевизоры позволяют регулировать 3D эффект. Модели Samsung, например, позволяют настраивать «G-ось» или глубину 3D эффекта для более комфортного просмотра и компенсации разницы в расстоянии между глазами.

5. Все ли могут смотреть 3D?

Нет. В соотвествии с данными специалистов по изучению зрения, от 5% до 10% американцев страдают стерео слепотой. Они зачастую имеют хорошее ощущение реальной глубины пространства, но не могут воспринимать виртуальное 3D измерение. Некоторые зрители могут смотреть программы с 3D эффектом, но они и в очках видят картинку как обычную 2D. Другие могут испытывать головные боли, напряжение глаз и прочие проблемы.

6. Я слышал 3D вызывает головные боли. Это правда?

Большая часть смотрящих 3D программы не испытывает неприятных ощущений, после краткого (в несколько секунд) периода ориентации, когда снимают очки и зрение адаптируется к реальной обстановке. Но в некоторых случаях 3D может вызывать нарушение ориентации или головные боли в течение длительного времени. Зрительский комфорт во многом зависит от производителя 3D материала. Обилие 3D эффектов может быть утомительно, а резкое перемещение камеры может дезориентировать, смазать экранные объекты. Создатели детских 3D фильмов должны учитывать, что у детей глаза находятся ближе друг к другу (около 5 см), чем у взрослых.

7. Чтобы смотреть 3D телевизор каждому нужны очки?

Да. Чтобы смотреть телевизор в 3D формате для каждого члена семьи придется купить очки. Для тех, кто смотрит без очков, картинка на экране будет двоиться, искривляться, иметь другие искажения, что сделает просмотр невозможным. Сейчас нет технологии, позволяющей одновременно видеть на экране 2D и 3D картинку.

Те, кто носит обычные очки для коррекции зрения, также могут в полной мере наслаждаться эффектом объемности, для них разработаны 3D очки специальной конструкции, надеваемые поверх обычных. Правда, некоторые могут испытывать при этом определенный дискомфорт.

8. Действительно ли необходим новый телевизор?

Да. Ни один из производителей телевизоров (кроме Mitsubishi, но это особый случай) не заявил о возможности доработки их телевизоров для просмотра 3D фильмов и телепрограмм. Одна из причин заключается в том, что телевизор должен иметь возможность приема широкополосного видеосигнала (с кадровой частотой 120 Гц) для отображения 3D изображения. Старые телевизоры обычно принимают видеосигнал с относительно низкой частотной полосой (кадровая частота 60 Гц и ниже). Это утверждение может показаться странным, ведь многие старые LCD телевизоры имеют частоту обновления экранного изображения 120 Гц и 240 Гц, а плазменные и 600 Гц. Независимо от количества таких герц, старые телевизоры принимают входной сигнал лишь с частотой 60 Гц или меньше. Более высокая частота обновления экранной картинки результат внутреннего умножения исходной кадровой частоты входного сигнала.

Еще одна причина в том, что 3D требует особой обработки видеосигнала и дополнительного оборудования для управления очками посредством инфракрасных или Bluetooth сигналов.

В настоящее время нельзя переделать старый телевизор для работы в 3D режиме, но нельзя исключать появления в будущем подобных решений от сторонних производителей.

Исключение касается примерно 4 миллионов 3D совместимых проекционных телевизоров DLP типа выпущенных в последние годы Mitsubishi и Samsung. А Samsung продавал еще и две серии 3D Ready плазм – PNB450 (2009 год) и PNA450 (2008 год). Все эти телевизоры при наличии специального комплекта (3D kit) могут отображать получаемое от компьютера 3D видео. Mitsubishi недавно представила специальный конвертор (3DC-1000) позволяющий без компьютера отображать на многоих моделях телевизоров Mitsubishi 3D фильмы и 3D телепрограммы в объемном виде. Samsung же заявил, что не планирует производство подобного конвертора. Остается сравнить по качеству изображения старые 3D совместимые телевизоры и новые 3D модели.

9. Мне теперь нужны новые Blu-ray плеер, кабельная приставка, игровая консоль и аудио/видео ресивер?

Что касается Blu-ray плеера, можно сказать да, при одном исключении. Производители плееров не заявили о возможности апгрейда ранее выпущенных моделей для воспроизведения 3D дисков. Так что многим для просмотра фильмов с 3D дисков придется покупать новый 3D Blu-ray плеер. Исключение касается владельцев игровых приставок Sony PS3. Компания заявила, что выполнит два апгрейда программной прошивки PS3. Первая позволит играть в 3D игры, а вторая смотреть фильмы с 3D Blu-ray дисков. Первоначально были сомнения, будут ли возможности консоли соответствовать Full HD разрешению, но компания заявила, что будут, несмотря на тот факт, что PS3 не сертифицирована на соответствие интерфейсу HDMI 1.4 (вопрос 10). Когда мы попросили подтвердить слухи, что консоль будет работать только с телевизорами Sony, последовал ответ, что PS3 будет работать в 3D режиме с любыми 3D совместимыми телевизорами, независимо от марки.


Что касается игровых приставок Xbox 360 и Wii, ни Microsoft, ни Nintendo не представили пока свои планы по развитию 3D игр.

Телекомпания DirecTV заявила, что их 3D система с пониженным разрешением потребует лишь свободной замены прошивки для используемой сейчас HD телеприставки. Как поступят другие телевещательные компании пока не известно. Можно предположить, что некоторые последуют подобному подходу с возможностью перехода на 3D формат путем замены прошивки существующего телеприемника.

Если вы используете ресивер лишь для переключения между HDMI входами источников, и хотите смотреть 3D Blu-ray фильмы, можете, не меняя ресивера, выбрать 3D Blu-ray плеер с двумя HDMI выходами, такой как Panasonic DMP-BDT350 или отказаться от звука в высоком разрешении (Dolby True HD или DTS Master Audio), которое требует HDMI соединения с ресивером. Если же хотите оставить ресивер, как переключатель HDMI источников (даже если он всего один), придется покупать 3D ресивер или подобную систему домашнего театра. Уже многие производители ресиверов представили модели с поддержкой 3D.

10. Могу ли я использовать старые HDMI кабели?

В настоящее время можете. Мы слышали противоречивые сообщения от производителей, но последняя верная информация указывает, что большинство недорогих HDMI кабелей будет прекрасно работать и в новом 3D формате. Стоит лишь учесть, что при длине кабелей более трех футов могут быть проблемы. Мы можем подтвердить, что тестировали новые 3D телевизоры и 3D Blu-ray плееры, и можем рекомендовать использовать временно ваши старые кабели, не тратясь на новые «высокоскоростные» сертифицированные на соответствие HDMI 1.4.

Есть также некоторая путаница в связи с сертификацией в новейшем стандарте HDMI, известном как HDMI 1.4 и HDMI 1.4а, кабелей, телевизоров и прочей видео техники для корректной обработки 3D. Если сказать кратко, HDMI спецификация – грязный бизнес. Согласно компетентных источников, включая Sony, мы говорим «нет». Понятие сертификации на HDMI 1.4 не означает что определенные (широкие) возможности новой спецификации обязательно включены и используются в вашем оборудовании. Наш совет, игнорировать HDMI версию отдельного продукта, а обращать больше внимания на заявляемые производителем действительные возможности продукта, такие как возможность обрабатывать 3D.

Невозможно представить какую-либо значимую сферу производства, в которой на этапе конструирования не применяют объемную графику. Разработка любого объекта становится доступнее при трехмерном представлении каждого элемента, значимой детали. На каждом этапе создания продукта, будь это несложный механизм или ракетный двигатель, ориентируются на многогранный макет. Он представляет собой многовекторный чертеж, имеющий не только номинальную высоту, длину и ширину, но и визуальное воплощение. В этой статье мы расскажем, как появилась первая компьютерная реалистичная фигура, в каких сферах технология нашла свое применение и какие программы используют проектировщики.

Мы часто слышим это сочетание – 3D. Оно является сокращением английского 3-dimensional, что дословно переводится как «три размера». К этой фразе прибавляют дополнительные слова: звук, изображение, шутер, шоу, принтер и так далее – вариантов масса. Но остается основной смысл: при употреблении этого метода происходит переход из схематического, однолинейного пространства в более реалистичное. Эта способность «одухотворять» неживое ставится в основу многих начинаний. Но визуализация нашла свое начало и получила наибольшую востребованность именно в конструировании объемного образа.

Оно широко применяется в следующих отраслях:

  • индустрия развлечений;
  • медицина;
  • промышленность.

Расскажем о каждой группе подробнее.

Кинематограф, компьютерные игры и анимация: заслуги 3D моделирования

Все виртуальные пространства и несуществующие герои созданы с помощью особой техники использования полигонов. Так называются обыкновенные геометрические фигуры с тремя или четырьмя гранями, которые соединяются под разными углами в один объект. Чтобы он пришел в движение, необходимо менять параметры у составляющих – вытягивать, перемещать, вращать. Так как все они связаны, то действие похоже на натяжение паутины – остальные сегменты деформируются в соответствии с первым.

Чем меньше площадь каждого отдельного куска, тем больше их общее количество, а значит, выше точность изображения. В таких случаях принято говорить о качестве графики – в некоторых играх можно ее делать выше и ниже. Это актуально в тех случаях, когда мощность компьютера не позволяет быстро отображать все фрагменты. Нельзя сказать, что небольшое количество полигонов – модели low poly, хуже чем High poly, когда деталей во много раз больше. Для части анимации достаточно общего вида героя, если он второстепенный или один из многих. Главного персонажа, как правило, рисуют более подробно. Сверху графических фигур накладываются текстуры, которые завершают образ.

Первым САПРом для профессионального и любительского пользования стал AutoCAD. Со временем стали появляться его качественные аналоги и второсортные подделки. Сводный список софтов мы приведем ниже, сейчас ограничимся указанием на очень удобную для 3D моделирования программу – ZWCAD Professional.

Она не уступает «Автокаду» в функционале, но существенно отличается по стоимости, которая у популярного бренда выше. Это разработка компании ZWSOFT, которая поддерживает свои позиции на рынке ПО с 1993 года и реализует свои продукты более чем в 80 странах мира. В 2017 году появилась новая усовершенствованная версия «ЗВкада». Основное направление разработки – это трехмерное конструирование. Которое, кстати, применяется не только в индустрии развлечения, но и здравоохранении.


Визуализация в медицине

Она развивается в двух основных направлениях:

    точечная или комплексная томография;

    конструирование и создание протезов.

Современные 3D-сканирования позволяют обнаружить дефекты органов и тканей, которые скрыты при простом рентгене или УЗИ. Появление таких технологий сделало возможным определение заболевания в тех ситуациях, когда ранее проводились диагностические операции. Широкое распространение они приобрели в стоматологии и челюстно-лицевой хирургии. Для удобства обращения с новшеством больницы не ограничиваются компьютерными макетами, а приобретают принтеры для объемной печати.

Воплощенный в жизнь результат томографии может стать основой для создания импланта, например, зуба, который будет идеально подходить по размерам пациенту. В более сложном варианте технология помогает смоделировать протез конечности, слуховой аппарат, вены, нервы и даже искусственный сердечный клапан. Активно развивается биопечать – в ней вместо красок используются живые человеческие клетки. Но первый этап конструирования остается за компьютерными 3D программами. Здесь, как и при построении мультипликационных героев, используется полигональное моделирование. Искривление пластин показывает дефекты тканей. Воздействие на фрагменты позволит создать объемную фигуру идеального импланта, а вращение и передвижение частей покажет, как будет двигаться протезированная рука.

Главными пользователями являются инженеры, электрики, строители, работники дорожных служб – специалисты технической направленности. Их инструмент – это твердотельные или полые конструкции, обладающие математически точными параметрами, расчетными данными и реальной направленностью на работу. Поэтому, особенно важным для этой категории пользователей является не внешний вид модели, а возможность применения формул, работы с ними, срезовые чертежи, графика, а также проверка всего механизма на любом этапе разработки. Таким образом, цель проектировщика – это не только визуализация объекта, но, в большей степени, измеримая и рабочая информация о нем.


Работа в CAD (русскоязычная аббревиатура – САПР) предполагает профильное образование. Она будет эффективна, когда специалист не только видит образ, но знает материал, с которым ведется макет, особенности использования изделия и многие другие нюансы. Поэтому программы разряда ZWCAD с широким спектром действий и большим количеством инструментов, компании заказывают комплектами, чтобы обеспечить ПО весь отдел. Их же устанавливают на компьютеры студентов технических и архитектурных ВУЗов, чтобы будущие специалисты сразу конструировали в удобной и многофункциональной среде. Ориентируясь не только на индивидуального покупателя, но и на массовые поставки, ZWSOFT разработал гибкую политику лицензирования и существенно снизил цены на серийные закупки.

При работе в Системах Автоматизированного Проектирования инженер получает электронно-геометрическую модель. Что это такое в объемном 3D моделировании поможет понять список действий, который с ней можно совершить:

    Выполнить чертежи любого среза, в любом изображении под выбранным углом. Таким образом необходим один макет вместо массы разрозненных графиков. Поэтому с одним файлом, используя разные слои, могут одновременно работать разные специалисты, и даже разные отделы.

    Подогнать параметры всего изделия, изменив ввод одной данной величины.

    Производить расчеты любого показателя или коэффициента. Как в статичном положении, так и в прогнозируемом движении.

    Написать пакет для компьютерного управления станком или другим техническим оборудованием (ЧПУ).

    Использовать 3D-принтер и воссоздать объемную модель для презентации или показательного конструирования.Что такое план 3-д моделирования

    Каждая работа не обходится без алгоритма действий. Часто последовательность условна, особенно в творческих профессиях, однако даже там конструирование объекта происходит по следующим этапам:


    4. Анимация, если она необходима. Если это статичный объект, то возможно показать, как он приходит во взаимодействие со сторонними элементами. На этом этапе дополнительно можно рассчитать трение, КПД и другие коэффициенты.

    5. Устранение мелких недостатков и визуализация – вывод итогового объекта.

    6. Дополнительным этапом может быть распечатка на 3Д-принтере.

    История объемного моделирования развивается на наших глазах. Это технология будущего. Работать в формате 3D сейчас удобно, интересно и востребовано. Главное, выбрать подходящую программу для наиболее эффективного проектирования.

Пользователи, которые только начинают свое знакомство с компьютером, нередко задаются вопросом о том, что такое и как реализовывается система 3D.

Это распространенная аббревиатура, которую в настоящее время можно встретить практически где угодно – от описаний гаджетов, и игр до процедур, предлагаемых в салонах красоты.

В данной статье рассказано, что имеется в виду под таким обозначение.

Определение

Как же расшифровывается 3D, что означает данное сокращение? D в данном контексте – это первая буква слова dimensions, которое означает «измерения».

Таким образом, аббревиатура 3D обозначает три измерения, именно этим сочетание может заменяться выражение трехмерная графика, а также объемное изображение.

Изначально данная аббревиатура стала употребляться именно относительно графики.

Такой способ изображения, по мере развития компьютерных технологий, пришел на смену привычному двухмерному построению картинки.

Особенно часто выражение «объемная графика» применяется к компьютерным играм, которые создают для пользователя, в большей или меньшей степени, эффект присутствия, позволяют реалистично обходить объекты, осматривать их с разных сторон.

Также данное выражение имеет широкое распространение, когда речь идет о фильмах и телевизорах. Некоторые фильмы в некоторых кинотеатрах могут быть показаны в системе Некоторые фильмы в некоторых кинотеатрах могут быть показаны в системе 3D, с эффектом присутствия, некоторые телевизоры оснащены такой функцией. Здесь имеет место несколько иная технология, чем в компьютерной графике – обе эти технологии будут подробно рассмотрены ниже.

Другие сферы применения

Такое определение используется не только в графике, оно также применимо и ко звуку, некоторым изделиям и т. п. Например:

По сути, такое обозначение может применяться практически ко всему, что традиционно является плоским – двухмерным, но с появлением новой технологии может выполняться, как трехмерное.

В любом словосочетании данная аббревиатура означает «объемное».

Фильмы

Раньше увидеть так называемые стереофильмы или можно , да и то не во всех. А кроме того, не со всеми фильмами это было возможно.

Сейчас же эта технология стала настолько распространена, что реализовывается даже в домашних телевизорах, и теперь у зрителя есть возможность смотреть фильмы с объемным изображением в домашних условиях.

Существует две технологии, с помощью которых можно добиться эффекта присутствия. Они имеют различные технические особенности, но дают более или менее схожий результат, то есть, объемную картинку высокого качества. Это технологии активного и пассивного построения изображения, каждая из которых имеет свои преимущества и недостатки.

Активное 3D

Эта технология «присутствия» может реализоваться в , она достаточно сложна и будет работать только с использованием специальных затворных очков.

Реализуется она путем динамичной смены различных картинок.

Когда очки надеты на зрителя, он в один момент может видеть изображение только одним глазом, затем – только вторым (используются специальные затемнители в очках).

Но за счет того, что картинки и затемнители меняются очень быстро, зритель этого мигания не замечает.

Реализация этого достаточно сложная – нужны не только очки, но и телевизор, поддерживающий такую систему построения изображения.

При этом, важно, чтобы очки точно синхронизировались с телевизором (чаще всего – по блютуз), а если этого не происходит, то качество картинки будет очень низким.

Интересной особенностью технологии является то, что мигание и затемнение линз приводит к общему субъективному затемнению картинки в очках, потому изображения в таких фильмах делается немного более ярким.

Его можно, но не слишком приятно смотреть без очков.

Пассивное 3D

Это иная технология, которая допускает использование совсем простых , которые известны всем и имеют синюю и красную линзы.

Именно таким методом реализуется объемное изображение в большинстве кинотеатров, так как такие очки дешевые, их стоимость в случае утери или порчи можно заложить в стоимость билета.

Конечно, для реализации такого эффекта в домашних условиях тоже требуется телевизор, способный работать по данной схеме.

Важно! Отдельно покупать очки, обычно, не требуется. Телевизоры с соответствующей технологией комплектуются сразу несколькими такими очками из-за их низкой стоимости.

Здесь основная нагрузка приходится не на очки, а на телевизор. Его экран , который построчно делит изображение на две части – синюю и красную.

Сняв очки, вы можете заметить, что картинка немного раздваивается, сильнее в центре, менее заметно у вертикальных границ экрана – это результат работы фильтра, о котором идет речь.

Каждый глаз при такой системе видит только ту картинку, которая предназначена ему – только четные или только нечетные строки.

При этом строки, предназначенные для другого глаза, перекрываются фильтром цветной линзы очков. Таким образом строится объемное изображение.

Сравнительная характеристика технологий

В настоящее время производители техники не пришли к однозначному мнению о том, какая из двух технологий оптимальнее и лучше отвечает потребностям потребителя, потому одинаково активно реализуются устройства обоих типов.

Хотя спрос на пассивное объемное изображение выше за счет более дешевой стоимости оборудования при не слишком сниженном качестве изображения.

В таблице ниже приведены преимущества и недостатки обеих технологий для сравнения.

Таблица 1. Сравнительные характеристики технологий активного и пассивного 3D
Активное Пассивное
Очки стоят достаточно дорого, как и телевизор с такой технологией В целом технология получается дешевле, чем при активном построении объемного изображения
Не всегда удобно смотреть телевизор в очках
Может не подходить некоторым людям, страдающим мигренью
Нужно следить за зарядом очков, так как они имеют собственный блок питания Чаще всего очков много в комплекте, они дешевые, выполняют лишь механическую функцию фильтра
Высокое качество изображения Чуть более низкое качество изображения
Полная безопасность для глаз по мнению специалистов, или нагрузка достаточно низкая
Мигание и смена картинки отнимает, пусть и минимально, время – в динамичных сценах это может быть достаточно сильно заметно Высокое качество картинки дают только телевизоры, которые стоят достаточно дорого
Даже несмотря на попытки производителей оптимизировать яркость, фильмы все равно будут немного темнее, чем в оригинале Нельзя смотреть кино на близком расстоянии – минимальное расстояние от экрана до зрителя для построения качественной картинки – 3 м.

Вне зависимости от технологии, важное значение имеет качество цветопередачи – если оно низкое, то оцени качество объемного видео все равно не получится.

Также большое значение, особенно при активном построении картинки имеет частота .

Все эти факторы существенно влияют на цену оборудования, часто настолько, что ценовая граница между устройствами с пассивной и активной технологией почти полностью стирается.

Совет. Нужно учесть, что фильм тоже должен быть обработан для воспроизведения в объемном формате. Хотя количество такого контента постепенно растет, в настоящее время его все еще немного. Особенно такого, который выполнен действительно качественно.

Графика

Объемная графика в играх имеет несколько иное значение. Здесь имеется в виду возможность передвижения в более или менее реалистичной локации.

Существенным отличием является, например, возможность осматривать здания, сооружения и предметы с разных сторон постепенно, тогда как в играх с двухмерной графикой при повороте, например, за здание, одна картинка резко сменялась другой.

Здесь речь не идет об эффекте присутствия – речь только о красивой картинке, создающей ощущения реалистичной игры. Так как это просто картинка, никаких очков здесь не требуется, так как технически такие реализуются иначе. Картинка строится на основании объемных компьютерных моделей всех объектов, которые есть в игре, а также локаций.

При этом,при «движении» игрока по локации, картинки динамично сменяют одна другую, создавая соответствующий эффект.

Важное значение здесь имеет высокая частота обновления экрана – если она будет низкая, картинка будет зависать, изображение «прыгать» и т. п.

По сравнению с традиционными двухмерными играми, трехмерные оказывают достаточно большую нагрузку на аппаратные ресурсы оборудования.

Кроме того, при игре в режиме онлайн очень важна высокая скорость интернета и высокое качество соединения.

Трехмерное изображение в играх гораздо более распространено, чем в фильмах , что связано с тем, что такая технология начала широко внедряться гораздо раньше.

По сути, именно с ее появлением и появилось само понятие трехмерной графики.

Кроме того, такая технология не только проще в технической реализации, но и дешевле, так как не требует дополнительного оборудования.

Футуристический вертолет проходит низко над головами зрителей, закованные в экзоброню роботизованные морпехи сметают все на своем пути, здоровенный космический шаттл сотрясает воздух ревом двигателей – так близко и устрашающе реально, что непроизвольно вжимаешь голову в плечи.

Недавно вышедший на экраны «Аватар» Джеймса Камерона или трехмерная компьютерная игра заставляют зрителя, сидящего в кресле перед экраном, чувствовать себя участником фантастического действа...

Совсем скоро инопланетные монстры будут прогуливаться в каждом доме, где есть современный домашний кинотеатр.

Но каким же образом плоский экран способен показывать объемную картинку?

Человек в трехмерном объемном пространстве...

Один и тот же объект левым и правым глазом мы видим под разными углами, таким образом формируются два изображения – стереопара. Мозг соединяет обе картинки в одну, которая интерпретируется сознанием как объемная.

Различия в перспективе позволяют мозгу определить размер объекта и расстояние до него. На основании всей этой информации человек получает пространственное представление с правильными пропорциями.

Как возникает объемное изображение

Для того чтобы картинка на экране казалась объемной, каждый глаз зрителя, как в жизни, должен видеть несколько отличающееся изображение, из которых мозг сложит единую трехмерную картину.

Первые фильмы в формате 3Д , созданные с учетом этого принципа, появились на экранах кинотеатров еще в 50-е годы.

Поскольку набирающее популярность телевидение уже тогда составляло серьезную конкуренцию киноиндустрии, дельцы от кинематографа хотели заставить людей оторваться от диванов и направиться в кино, прельщая их визуальными эффектами, которые в то время не мог обеспечить ни один телевизор: цветным изображением, широким экраном, многоканальным звуком и, разумеется, трехмерностью.

Эффект объема при этом создавался несколькими разными способами.

Анаглифический метод (анаглиф – по-гречески «рельефный»). На ранних этапах 3D-кинематографа в прокат выпускались только черно-белые 3D-фильмы. В каждом соответствующим образом оснащенном кинотеатре для их показа использовались два кинопроектора.

Один проецировал фильм через красный фильтр, другой выводил на экран слегка смещенные по горизонтали кинокадры, пропуская их через зеленый фильтр.

Посетители надевали легкие картонные очки, в которые вместо стекол были установлены кусочки красной и зеленой прозрачной пленки, благодаря чему каждый глаз видел только нужную часть изображения, а зрители воспринимали «объемную» картинку.

Однако оба кинопроектора при этом должны быть направлены строго на экран и работать абсолютно синхронно.

В противном случае неизбежно раздвоение изображения и, как следствие, головные боли вместо удовольствия от просмотра – у зрителей.

Подобные очки хорошо подходят и для современных цветных 3D-фильмов , в частности, записанных методом Dolby 3D. В этом случае достаточно одного проектора с установленными перед объективом световыми фильтрами.

Каждый из фильтров пропускает для левого и правого глаза красный и синий свет. Одно изображение имеет синеватый, другое – красноватый оттенок. Световые фильтры в очках пропускают только соответствующие, предназначенные для определенного глаза кадры.

Однако данная технология позволяет добиться лишь незначительного 3D-эффекта , с малой глубиной.

Затворный метод. Оптимален для просмотра цветных фильмов. В отличие от анаглифического этот метод предусматривает попеременную демонстрацию проектором изображений, предназначенных для левого и правого глаза.

Благодаря тому, что чередование изображений осуществляется с высокой частотой – от 30 до 100 раз в секунду – мозг выстраивает целостную пространственную картину и зритель видит на экране цельное трехмерное изображение.

Ранее данный метод назывался NuVision, в настоящее время он чаще именуется XpanD. Для просмотра 3D-фильмов по этому методу используются затворные очки, в которые вместо стекол или фильтров установлены два оптических затвора.

Эти небольшие светопропускающие ЖК-матрицы способны по команде от контроллера менять прозрачность – то затемняясь, то просветляясь в зависимости от того, на какой глаз в данный момент необходимо подать изображение.

Затворный метод используется не только в кинотеатрах: применяется он и в телевизорах, и в компьютерных мониторах. В кинотеатре подача команд осуществляется с помощью ИК-передатчика.

Некоторые модели затворных очков 90-х годов, предназначенных для ПК, подключались к компьютеру с помощью кабеля (современные модели имеют беспроводной интерфейс).

Недостаток данного метода в том, что затворные очки являются сложным электронным устройством, потребляющим электроэнергию. Следовательно, они имеют достаточно высокую (особенно по сравнению с картонными очками) стоимость и значительный вес.

Поляризационный метод. В сфере кино такое решение носит название RealD. Его суть в том, что проектор попеременно демонстрирует кинокадры, в которых световые волны имеют разное направление поляризации светового потока.

В необходимых для просмотра специальных очках установлены фильтры, пропускающие только световые волны, поляризованные определенным образом. Так оба глаза получают изображения с различной информацией, на основании которой мозг формирует объемную картинку.

Поляризационные очки несколько тяжелее картонных, но поскольку они работают без источника электроэнергии, то весят и стоят значительно меньше, чем затворные.

Однако наряду с поляризационными фильтрами, устанавливаемыми на кинопроекторы и в очки, для показа 3D-фильмов по этому методу требуется дорогой экран со специальным покрытием.

На данный момент предпочтение окончательно не отдано ни одному из названных методов. Стоит, однако, отметить, что с двумя проекторами (по анаглифическому методу) работает все меньшее количество кинотеатров.

Как создаются 3D-фильмы

Использование сложных технических приемов требуется уже на этапе съемки, а не только в процессе просмотра 3D-фильмов.

Для создания иллюзии трехмерности каждую сцену необходимо снимать одновременно двумя камерами, с разных ракурсов.

Как и глаза человека, обе камеры размещают близко друг к другу, причем обязательно на одинаковой высоте.

3D-технологии домашнего применения

Для просмотра 3D-фильмов на DVD до сих пор используются простые картонные очки, наследие далеких 50-х. Этим объясняется и скромный результат – плохая цветопередача и недостаточная глубина изображения.

Однако даже современные 3D-технологии привязаны к специальным очкам, и такое положение вещей, по всей видимости, изменится не скоро.

Хотя в 2008 году компания Philips и представила прототип 42-дюймового жидкокристаллического 3D-телевизора, не требующего использования очков, данная технология достигнет своей рыночной зрелости минимум через 3–4 года.

А вот о выпуске 3D-телевизоров, работающих в тандеме с очками, на международной выставке IFA 2009 объявили сразу несколько производителей.

К примеру, Panasonic намерен уже к середине 2010 года выпустить модели телевизоров с поддержкой 3D, так же, как Sony и Loewe, делая ставку на затворный метод.

Компании JVC, Philips и Toshiba также стремятся взойти на «3D-подиум», однако они отдают предпочтение поляризационному методу. LG и Samsung разрабатывают свои устройства на основе обеих технологий.

Контент для 3D

Основным источником трехмерного видеоконтента являются Blu-ray-диски. Контент передается на источник изображения через интерфейс HDMI.

Для этого телевизор и проигрыватель должны поддерживать соответствующие технологии, а также недавно принятый стандарт HDMI 1.4 – одновременную передачу двух потоков данных формата 1080p обеспечивает только он. Пока что устройства с поддержкой HDMI 1.4 можно пересчитать по пальцам.

3D-технологии на компьютере

Первоначально просмотр трехмерного изображения на компьютере был доступен только с помощью очков или специальных шлемов виртуальной реальности. И те и другие были оснащены двумя цветными ЖК-дисплеями – для каждого из глаз.

Качество результирующего изображения при использовании данной технологии зависело от качества применяемых ЖК-экранов.

Однако данные устройства обладали целым рядом недостатков, которые отпугивали большинство покупателей. Кибершлем фирмы Forte, появившийся в середине 90-х, был громоздким, неэффективным и напоминал средневековое орудие пытки.

Скромного разрешения в 640х480 точек для компьютерных программ и игр было явно недостаточно. И хотя позднее были выпущены более совершенные очки, к примеру модель LDI-D 100 фирмы Sony, но даже они были достаточно тяжелыми и вызывали сильный дискомфорт.

Выдержав почти десятилетнюю паузу, технологии формирования стереоизображения на экране монитора вышли на новый этап своего развития. Не может не радовать то обстоятельство, что по крайней мере один из двух крупных производителей графических адаптеров, фирма NVIDIA, разработал нечто инновационное.

Комплекс 3D Vision стоимостью около 6 тыс. руб. включает в себя затворные очки и ИК-передатчик. Однако для создания пространственной 3д картинки при помощи этих очков требуется соответствующее аппаратное обеспечение: ПК должен быть оснащен мощной видеоплатой NVIDIA.

А для того чтобы псевдотрехмерная картинка не мерцала, монитор с разрешением в 1280х1024 точки должен обеспечивать частоту обновления экрана минимум в 120 Гц (по 60 Гц на каждый глаз). Первым ноутбуком, оснащенным данной технологией, стал ASUS G51J 3D.

В настоящее время доступны также так называемые 3D-профили более чем для 350 игр, которые можно скачать с веб-сайта NVIDIA (www.nvidia.ru). В их число входят как современные игры жанра экшн, к примеру Borderlands, так и выпущенные ранее.

В продолжение темы компьютерных игр, альтернативой затворному 3D является поляризационный метод. Для его реализации нужен монитор с поляризационным экраном, например Hyundai W220S.

Объемное изображение становится доступно при наличии любой мощной видеокарты ATI или NVIDIA. Однако при этом разрешение снижается с 1680x1050 до 1680x525 точек, поскольку используется чересстрочный вывод кадров.

По материалам журнала ComputerBild

Раздел постоянно пополняется полезностями:

Напишите свое мнение ниже в комментариях. Обсудим.

Loading...Loading...