Современная медицина и здравоохранение. Прорывы в медицине и фармацевтике. Новое в медицине: технологии лечения, методы, лекарства. Правда В вашем браузере не включен Javascript. Люди против бактерий: медики проигрывают Вирусы против бактерий

Foto: Shutterstock

Вот список из семи продуктов, которые следует чаще включать в питание, чтобы профилактика вирусных и бактериальных инфекций была наиболее эффективной.

1. Молоко и молочные продукты

Органическое молоко и ферментированные молочные продукты содержат полезные бактерии. Они нередко критикуются в последние десятилетия, так как лактоза и казеин являются аллергенами для части человечества. Но при этом молоко является выдающимся источником нутриентов, пищеварительных ферментов, полезных жиров и протеинов, важных для поддержания иммунитета. Натуральный йогурт и другие кисломолочные продукты питают и "ремонтируют" весь желудочно-кишечный тракт (ЖКТ).

2. Квашеная капуста и другие ферментированные продукты

С наступлением осени многие хозяйки принимаются квасить капусту. Как раз поспевают поздние сорта, которые особенно хороши для домашних заготовок. Квашеная капуста вкусна и чрезвычайно полезна, как и многие другие ферментированные продукты, например:

  • кимчи;
  • мисо;
  • натто;
  • "бочковые", т. е. квашенные огурцы, помидоры, яблоки, арбузы, маслины и пр.

Всем, кто заботится о повышении иммунитета, следует добавить в рацион ферментированные продукты, которые богаты бактериями и питают микробиом человека. "Хорошие" бактерии, содержащиеся в них, оказывают чрезвычайно благотворное влияние на иммунную систему кишечника, находясь в "первой линии" защиты от патогенных микроорганизмов, а также помогают в выработке антител.

3. Печень и другие субпродукты

Печень, почки, сердце и другие субпродукты, хотя и кажутся некоторым людям "страшными", выгодно отличаются очень высоким содержанием нутриентов, которые обеспечивают иммунитет весомой поддержкой:

  • токоферолом;
  • цинком;
  • конъюгированной линолевой кислотой (CLA);
  • омега-3 полиненасыщенными жирными кислотами;
  • бета-каротином и пр.

Если не нравится вкус субпродуктов, советуем попробовать приготовить их по новым рецептам. Например, можно оставить печень "понежиться" в молоке или лимонном соке на ночь, чтобы удалить особый аромат, затем окунуть кусочки во взбитые яйца, обвалять в кокосовой стружке или миндальной муке, а затем потушить на медленном огне в оливковом масле или масле авокадо с красным луком (еще один прекрасный продукт для профилактики простуд!), грибами и болгарским перцем.

4. Кокосовое масло

Оно богато лауриновой кислотой, которая превращается в человеческом организме в монолаурин. Это соединение, содержащееся в грудном молоке женщин, способствует совершенствованию иммунитета новорожденных. Лауриновая кислота также может повысить иммунитет взрослого, она разрушает липидные мембраны патогенных организмов.

Лучше покупать нерафинированные сорта кокосового масла, произведенные без тепловой обработки или химических веществ.

5. Грибы

Они оптимизируют защитные способности, так как богаты:

  • протеинами;
  • клетчаткой;
  • кальцием;
  • аскорбиновой кислотой;
  • витаминами группы В;
  • биологически активными соединениями, называемыми "бета-глюканами" (хорошо известны своими свойствами усиливать защитные возможности организма, активировать и модулировать клетки иммунной системы человека), они вступают во взаимодействие с макрофагами, помогают белым кровяным тельцам связываться с вирусами и уничтожать их.

6. Съедобные водоросли

Все морские и пресноводные съедобные водоросли обладают замечательными целебными свойствами. Возьмите, например, хлореллу. Эти одноклеточные пресноводные водоросли являются идеальным продуктом питания. Вещества, входящие в состав хлореллы, "связывают" ртуть и другие тяжелые металлы, инфекционные агенты, чтобы было легче удалить их из организма. Хлорофилл в составе этих и других водорослей помогает оксигенации крови, а также способствует регенерации тканей.

7. Чеснок

Он невероятно полезен для здоровья человека, поскольку защищает от патогенной микрофлоры. Для укрепления иммунитета советуем употреблять чеснок ежедневно. Вирусы, бактерии, дрожжевые грибки, которые учатся приспосабливаться к синтетическим антибиотикам, не умеют сопротивляться действию этого мощного лекарственного средства, созданного природой.

Для обеспечения оптимальной работы иммунной системы чеснок следует употреблять в свежем виде. Его активный ингредиент, аллицин, высвобождается при измельчении и разрушается в течение одного часа. Поэтому экстракт чеснока в составе БАДов бесполезен, в отличие, скажем, от салата из свежих овощей и листовой зелени, приправленного оливковым маслом с лимонным соком, с измельченным зубчиком чеснока и морской солью.

Кроме того, аллицин в чесноке:

  • обладает антиканцерогенными свойствами;
  • снижает общий уровень холестерина и уровень липопротеинов низкой плотности ("плохой" холестерин) в крови;
  • понижает показатели артериального давления;
  • уменьшает вероятность тромбообразования;
  • служит профилактике инсульта;
  • предотвращает укусы насекомых и т.д.

Со времен Дарвина известно, что мир - вековая арена борьбы за существование всего живого. Смерть рано или поздно губит все, что неспособно выдержать эту борьбу, эту конкуренцию с более совершенными, более приспособленными к жизни существами. Однако, пожалуй, сам Дарвин не подозревал, что и в мире, который находится за пределами человеческого зрения, среди мельчайших живых существ, среди микробов, бушует та же вековая борьба за существование. Но кто с кем борется? Какие виды оружия используются при этом? Кто оказывается побежденным и кто победителем?

На эти и подобные им вопросы ученые нашли ответы далеко не сразу. Долгое время в распоряжении исследователей были лишь отдельные разрозненные наблюдения.

Еще в 1869 году профессор Военно-медицинской академии Вячеслав Авксентьевич Манассеин заметил, что, если на питательной среде поселилась плесень, на ней никогда не растут бактерии. В то же время другой ученый, профессор Алексей Герасимович Полотебнев, использовал на практике наблюдение своего коллеги. Он успешно лечил гнойные раны повязками с зеленой плесенью, которую соскабливал с лимонных и апельсиновых корок.

Луи Пастер заметил, что обычно бациллы сибирской язвы хорошо растут на питательном бульоне, но, если в этот бульон попадут гнилостные бактерии, они начинают быстро размножаться и "забивают" бациллы сибирской язвы.

Илья Ильич Мечников установил, что гнилостные бактерии, в свою очередь, подавляются бактериями молочнокислыми, образующими вредную для них молочную кислоту.

Известно было и еще несколько фактов такого же рода. Этого оказалось достаточно, чтобы зародилась мысль использовать борьбу микроорганизмов друг с другом в целях лечения заболеваний. Но как? И каких?

Вот если бы заглянуть в жизнь микромира, рассмотреть, что делают микробы в естественной обстановке, а не в искусственно выращенной лабораторной культуре. Ведь в одном грамме почвы, взятой где-нибудь в лесу или на огороде, содержится несколько тысяч спор плесневых грибов, несколько сотен тысяч других грибов-актиномицетов, миллионы бактерий различных видов, не говоря об амебах, инфузориях и других животных.

И, конечно, в таких тесных сообществах микробы вступают в самые различные взаимоотношения друг с другом. Здесь могут наблюдаться и случаи взаимопомощи - симбиоза, и ожесточенная борьба представителей разных микробных видов, так называемый естественный антагонизм микробов, и просто безразличное отношение друг к другу.

Но как это увидеть?!

Киев. 1930 год. Опыт за опытом ставил доцент Киевского университета Николай Григорьевич Холодный, пытаясь найти "способ изучения микроорганизмов в их естественной обстановке". Такой способ им уже найден для микробов, обитающих в водной среде. Но как рассмотреть жизнь микробов в почве?

Собрав в окрестностях Киева образцы почв, Холодный по нескольку дней не выходит из своей лаборатории. К тому же университетская лаборатория - его дом. Квартира, где Николай Григорьевич жил раньше, была разрушена артиллерийским снарядом еще в 1919 году. С тех пор qh поселился в лаборатории. Равнодушный к материальным благам и удобствам жизни, он даже считает, что устроился неплохо: можно работать в любое время суток.

Сейчас Холодный уже известный исследователь железобактерий, "крестный" нескольких дотоле науке неведомых видов из рода Лептотрикс. Пройдет несколько лет, и две его статьи, "Почвенная камера, как метод исследования микрофлоры" и "Метод непосредственного изучения почвенной микрофлоры", положат начало новому направлению в микробиологии. "Войны микробов" в их естественном состоянии станут предметом прямого изучения. Но пока пробуется один прием за другим, опыт следует за опытом. Многое из найденного Холодного не удовлетворяет, сложно. Во всех своих методических разработках он ищет простоты. Способ должен быть таким, чтобы им легко мог воспользоваться любой исследователь. Вот, например, острым ножом ученый делает вертикальный разрез в почве и вставляет в него четырехугольное стерилизованное стеклышко, стекло закапывается. Со временем оно покрывается почвенными растворами, мелкими частичками почвы, среди которых поселятся обитающие в ней микроорганизмы. Теперь остается только извлечь стекло и после специальной обработки рассмотреть его под микроскопом. Приставшие к стеклу частички почвы и микробы сохраняются в их естественном расположении, и, таким образом, можно наблюдать отдельные "кадры" из грандиозного фильма о жизни микробов в почве. Проще, кажется, не придумаешь.

Действительно, это было то, что так упорно искал Холодный. Он видел, как мир микробов жил своей бурной и тайной жизнью. Ежесекундно здесь шла ожесточенная борьба, приводящая к смерти одних обитателей и усиленному размножению других.

Теперь уже ученые знают, каким оружием пользуются различные виды микробов в своих непрекращающихся "войнах". Это не обязательно прямое уничтожение, как делают амебы и инфузории с бактериями. Очень часто микробы применяют и другие методы воздействия на своих врагов. Винные дрожжи, например, выделяют спирт, а уксуснокислые бактерии - уксусную кислоту. Такое "химическое оружие" угнетает развитие большинства других видов микробов, являясь для них ядом. Это как бы оружие против всех, кто посмеет приблизиться.

Однако в арсенале некоторых микроорганизмов встречается и оружие "персонального" прицела. Оно направлено только против некоторых видов микробов, угнетает только их и не поражает все остальные микроорганизмы. Как правило, такие вещества вырабатываются специально для нападения и защиты против микробов, с которыми первым приходится чаще всего сталкиваться в своей жизни. Вещества эти получили название антибиотиков.

Особенно много антибиотиков вырабатывают почвенные микроорганизмы. Это и понятно - ведь в почве отдельные виды микробов образуют целые скопления. Создав вокруг такого "поселения" зону антибиотической защиты, микробы находятся за ней, как за крепостной стеной. Причем она служит им не только надежной защитой, но в какой-то степени даже средством наступления, так как по мере роста колонии "крепостные стены" раздвигаются и его обитатели расширяют свои владения. Кстати, отсюда понятно, почему не вырабатывают антибиотиков водные микроорганизмы. В воде крепости не создашь, да и соседи здесь непостоянные. Тут нужно оружие против всех, кто посмеет приблизиться, - допустим, какая-нибудь кислота.

Близкое знакомство с почвенной микрофлорой показало, что почвенных микробов-антагонистов очень много и большинство из них для решения основного вопроса борьбы за существование "жить или не жить" вырабатывает антибиотические вещества, убивающие врагов.

Многолетние систематические исследования советского ученого Николая Александровича Красильникова показали, что особенно широко распространены в почве различные виды плесневых грибов и так называемые лучистые грибы - актиномицеты. И те и другие вырабатывают антибиотики.

У них это, пожалуй, единственное средство защиты против бактерий, для которых грибы являются лакомой пищей. Кстати, сами бактерии тоже вырабатывают антибиотики, но уже против почвенных амеб и инфузорий, охотящихся за ними. Этот интересный факт был впервые установлен профессором Александром Александровичем Имшенецким.

Итак, казалось бы, все просто. Микробов, вырабатывающих антибиотики, много. Остается только отобрать у них это оружие, выделить его в чистом виде и применять как лекарство против болезнетворных бактерий. Но не тут-то было!

Действительно, антибиотиков много. Так, только из почвы Подмосковья в лаборатории профессора Георгия Францевича Гаузе было выделено в чистую культуру. 556 штаммов почвенных грибов, 234 из них оказались продуцентами самых разных антибиотиков. Большая часть штаммов (56 процентов) вырабатывала противобактериальные антибиотики; 23 процента были универсалы: их антибиотики подавляли и рост бактерий и рост других грибов; остальные владели оружием лишь против своих собратьев - грибов иных видов.

Богатый набор продуцентов антибиотиков имеет и почва других мест. Однако здесь повторяется история с "магической пулей" Эрлиха: антибиотики оказываются токсичными не только для возбудителей болезней, но и для организма человека.

С одной стороны, в природе великое множество антибиотиков, но использовать в качестве лекарственных препаратов можно лишь считанные единицы. Впрочем, это стало известно уже после того, как в поиски новых средств борьбы с болезнетворными микробами вмешался случай. И хотя ученые в своей работе на случай никогда не рассчитывают, а гипотезы и пути исследований строятся, исходя из уже известных закономерностей, в истории науки можно найти немало примеров, когда дальнейшее развитие определяла счастливая случайность. Но случай не слеп. "Судьба, - как сказал Пастер, - одаривает только подготовленные умы".

Так было и на этот раз.

В мае этого года в работе "Mitochondria-targeted antioxidants as highly effective antibiotics", опубликованной в журнале Scientific Reports, коллектив авторов из МГУ впервые показал принципиально новый гибридный антибиотик: его действие направлено против мембранного потенциала бактерий, который обеспечивает болезнетворные клетки энергией.


Победа! — но только временная


В середине прошлого столетия человечество находилось в состоянии эйфории, связанной с невероятными успехами в лечении инфекционных заболеваний бактериальной природы. Многие бактериальные инфекции, вызывавшие ужасающие по количеству жертв эпидемии в средние века, превратились в карантинные инфекции, которые легко и эффективно вылечивались.

Этот успех стал возможен после открытия в 1920-х годах британским бактериологом Александром Флемингом первого антибиотика — пенициллина; он обнаружился в плесневых грибах Penicillium notatum . Спустя десятилетие британские ученые Говард Флори и Эрнст Чейн предложили способ промышленного производства чистого пенициллина. Все трое в 1945 году были удостоены Нобелевской премии в области физиологии и медицины.

Массовое производство пенициллина было налажено во время Второй мировой войны, что вызвало резкое уменьшение смертности среди солдат, обычно умиравших от раневых инфекций. Это позволило французским газетам накануне визита Флеминга в Париж писать, что для разгрома фашизма и освобождения Франции он сделал больше целых дивизий.

Углубление знаний о бактериях привело к появлению большого числа антибиотиков, разнообразных по механизму, широте спектра действия и химическим свойствам. Почти все бактериальные заболевания либо полностью вылечивались, либо серьезно подавлялись антибиотиками. Люди полагали, что человек победил бактериальные инфекции.

Мелкие очаги сопротивления — и поражение


Одновременно с успехами появились и первые признаки грядущей глобальной проблемы: случаи бактериального сопротивления антибиотикам. Прежде безропотно чувствительные к ним микроорганизмы вдруг становились индифферентны. Человечество ответило бурным развитием исследований и новыми антибиотиками, это привело лишь к увеличению числа препаратов и новой резистентности бактерий.

В мае 2015 года Всемирная организация здравоохранения признала кризисом бактериальное сопротивление антибиотикам и выдвинула Глобальный план борьбы с устойчивостью к противомикробным препаратам. Его следовало выполнить безотлагательно, свои действия должны были координировать многочисленные международные организации вроде защитников окружающей среды, и отрасли экономики — не только человеческая медицина, но и ветеринария, и промышленное животноводство, и финансовые институты, и общества защиты прав потребителей.

План, должно быть, так или иначе выполняется, но к несчастью, несмотря на это уже в сентябре 2016 года одна американская пациентка умерла от сепсиса. Такое бывает, и даже чаще, чем хотелось бы, но ее погубила так называемая супербактерия — Klebsiella pneumoniae , но не обычная, а устойчивая ко всем разрешенным в США 26 антибиотикам, в том числе к антибиотику "последнего резерва" колистину.

Итак, ученым стало очевидно, что бактериальные инфекции побеждают человечество, и современная медицина может быть отброшена во времена, предшествовавшие открытию антибиотиков. Одним из главных вопросов, поднятых на международной конференции ASM Microbe , проводившейся в Новом Орлеане в июне 2017 года Американским обществом микробиологов, был такой: "Может ли человечество выиграть войну с микробами?". На той же конференции, кстати, отдельного внимания удостоилось движение antimicrobial stewardship, или управление антибиотикотерапией, которое имеет своей целью максимально разумно и достаточно, в соответствии с рекомендациями доказательной медицины, назначать антибиотики. Пока что законом такое обращение с антибиотиками стало только в одном месте в мире — в штате Калифорния, США.

Стало очевидным, что бактериальные инфекции побеждают человечество, и современная медицина может быть отброшена на уровень, предшествующий открытию антибиотиков

Как работает помпа


Действие помпы можно проиллюстрировать на примере основной помпы множественной лекарственной устойчивости кишечной палочки — AcrAB-TolC . Эта помпа состоит из трех основных компонентов: (1) белка внутренней клеточной мембраны AcrB , который за счет мембранного потенциала может перемещать вещества через внутреннюю мембрану (2) адаптерного белка AcrA , связывающего транспортер AcrB с (3) каналом на внешней мембране TolC . Точный механизм работы помпы остается недостаточно изученным, однако известно, что вещество, которое помпа должна выбросить за пределы клетки, попадает на внутреннюю мембрану, где его ждет транспортер AcrB , связывается с активным центром помпы и затем за счет энергии встречного движения протона выкачивается за пределы наружной мембраны бактерии.

Антиоксиданты направляются в митохондрию


Но решение, обходящее резистентность бактерий, можно считать, найдено — российскими учеными. В мае этого года в работе "Mitochondria-targeted antioxidants as highly effective antibiotics ", опубликованной в журнале Scientific Reports, коллектив авторов из МГУ впервые показал принципиально новый гибридный антибиотик широкого спектра действия — митохондриально направленный антиоксидант.

Митохондриально направленные антиоксиданты (МНА) получили широкое распространение не только как инструмент исследований роли митохондрий в разных физиологических процессах, но и как терапевтические средства. Это конъюгаты, то есть соединения, состоящие из какого-либо хорошо известного антиоксиданта (пластохинона, убихинона, витамина Е, ресвератрола) и проникающего, то есть способного преодолеть мембрану клетки или митохондрии, катиона (трифенилфосфония, родамина и др.).

Механизм действия МНА доподлинно не известен. Известно лишь, что в митохондрии они частично разобщают окислительное фосфорилирование, метаболический путь синтеза универсального клеточного горючего — аденозинтрифосфата, АТФ, что стимулирует клеточное дыхание и снижает мембранный потенциал и может приводить к защитному эффекту при окислительном стрессе.

Предположительно это выглядит так. МНА из-за своей липофильности (тяги к липидам или сродства с ними) связываются с мембраной митохондрии и постепенно мигрируют внутрь митохондрии, где, видимо, соединяются с отрицательно заряженным остатком жирной кислоты; составив комплекс, они теряют заряд и вновь оказываются снаружи мембраны митохондрии. Там остаток жирной кислоты захватывает протон, из-за чего комплекс распадается. Захватившая протон жирная кислота переносится в обратном направлении — и внутри митохондрии теряет протон, то есть, проще говоря, переносит его в митохондрию, отчего как раз и снижается мембранный потенциал.

Один из первых МНА был создан на основе трифенилфосфония в Оксфорде — английским биологом Майклом Мерфи; это был конъюгат с убихиноном (или коферментом Q , принимающим участие в окислительном фосфорилировании). Под названием MitoQ этот антиоксидант получил значительную известность как перспективный препарат для замедления старения кожи, а также как возможное средство защиты печени при гепатитах и жировом ее перерождении.

Позднее тем же путем пошла группа академика Владимира Скулачева из МГУ: на основе конъюгата трифенилфосфония с антиоксидантом пластохиноном (участвует в фотосинтезе) был создан эффективный SkQ1 .

В соответствии с симбиотической теорией происхождения митохондрий, выдвинутой членом-корреспондентом АН СССР Борисом Михайловичем Козо-Полянским в 1920-х годах и американским биологом Линн Маргулис в 1960-х годах, между митохондриями и бактериями — много общего, и можно ожидать, что МНА будут воздействовать на бактерии. Однако несмотря на очевидную схожесть бактерий и митохондрий и десятилетний опыт работы с МНА во всем мире никакие попытки обнаружить антимикробное действие МНА не приводили к положительным результатам.

Последний рубеж пал


Колистин считается антибиотиком последнего резерва — это старый препарат из класса полимиксинов, вышедший из употребления из-за своего токсического воздействия на почки. Когда обнаружились супербактерии, которые, кроме того что сами сопротивлялись известным антибиотикам, еще и обзавелись способностью передавать друг другу генную информацию, позволяющую сопротивляться антибиотикам, выяснилось, что во-первых, колистин губителен для всех этих бактерий, а во-вторых, бактерии не могут обмениваться генами резистентности к колистину, если вдруг таковая все-таки возникнет.

Увы, но в мае 2016 года в американское Хранилище мультирезистентных микроорганизмов, которое находится в структуре Исследовательского института имени Уолтера Рида (это структура армии США), поступила-таки бактерия, которая не просто была индифферентна к колистину, но еще и оказалась способна передавать генную информацию с этой резистентностью другим бактериям. Первый такой микроорганизм еще в 2015 году был зафиксирован в Китае, долгое время была надежда, что это единичный случай, но она не оправдалась. Особенно печально, что в США этим микроорганизмом оказалась всем хорошо знакомая кишечная палочка.

Загадка двух палочек


Прорыв случился в 2015 году: впервые антибактериальное действие МНА на примере SkQ1 было показано в работе "Разобщающее и токсическое действие алкил-трифенилфосфониевых катионов на митохондрии и бактерии Bacillus subtilis в зависимости от длины алкильного фрагмента" — ее опубликовал журнал "Биохимия" в декабре 2015 года. Но то было описанием феномена: эффект наблюдался при работе с сенной палочкой (Bacillus subtilis ) и не наблюдался при работе с палочкой кишечной (Escherichia coli ).

Но дальнейшие исследования, которые легли в основу новейшей работы, опубликованной в журнале Scientific Reports , показали, что МНА SkQ1 — высокоэффективный антибактериальный агент в отношении широкого спектра грамположительных бактерий. SkQ1 эффективно подавляет рост таких надоедливых бактерий, как золотистый стафилококк (Staphylococcus aureus ) — один из четырех наиболее частых видов микроорганизмов, вызывающих внутрибольничные инфекции. Так же эффективно SkQ1 подавляет рост микобактерий, в том числе палочки Коха (Mycobacterium tuberculosis ). Более того, МНА SkQ1 оказался высокоэффективным средством против грамотрицательных бактерий, таких как Photobacterium phosphoreum и Rhodobacter sphaeroides .

И только в отношении кишечной палочки он был крайне неэффективен, а ведь именно Escherichia coli — та бактерия, которую микробиологи используют как модельный организм, что и было, по-видимому, причиной неудачных попыток ранее обнаружить антимикробное действие МНА.

Естественно, исключительная резистентность кишечной палочки вызвала весьма сильный интерес исследователей. К счастью, современная микробиология сделала большой шаг вперед в методологическом аспекте, и у ученых созданы целые коллекции микроорганизмов с делециями (отсутствием) некоторых генов, не вызывающими их гибель. Одна из таких коллекций — делеционных мутантов кишечной палочки — находится в распоряжении МГУ.

Исследователи высказали предположение, что резистентность может быть обусловлена работой какой-либо из помп множественной лекарственной устойчивости, имеющихся у кишечной палочки. Любая помпа плоха для инфицированного человека тем, что просто выбрасывает из бактериальной клетки антибиотик, он на нее не успевает подействовать.

Генов, отвечающих за действие помп множественной лекарственной устойчивости, у кишечной палочки много, и было решено начать анализ с продуктов генов, входящих в состав сразу нескольких помп,— а именно белка TolC .

Белок TolC — канал на внешней мембране грамотрицательных бактерий, он служит внешней частью для нескольких помп множественной лекарственной устойчивости.

Анализ делеционного мутанта (то есть палочки без белка TolC ) показал, что его резистентность снизилась на два порядка и стала неотличима от резистентности грамположительных бактерий и нерезистентных грамотрицательных бактерий. Таким образом, можно было заключить, что выдающаяся резистентность кишечной палочки — результат работы одной из помп множественной лекарственной устойчивости, имеющих в составе белок TolC . А дальнейший анализ делеционных мутантов по белкам — компонентам помп множественной лекарственной устойчивости показал, что только помпа AcrAB-TolC участвует в откачке SkQ1 .

Резистентность, вызванная наличием помпы AcrAB-TolC, не выглядит непреодолимой преградой: антиоксидантный конъюгат SkQ1 — также уникальное для этой помпы вещество, очевидно, можно будет найти для нее ингибитор.

В мае 2015 года Всемирная организация здравоохранения (ВОЗ) выдвинула Глобальный план действий по борьбе с устойчивостью к противомикробным препаратам, признав бактериальное сопротивление антибиотикотерапии кризисом

Бессмертие Генриетты Лакс


Линия "бессмертных" клеток HeLa получила свое название по имени негритянки Генриетты Лакс (Henrietta Lacs). Клетки были получены из раковой опухоли ее шейки матки, без ее ведома и тем более согласия в феврале 1951 года Джорджем Гаем, врачом-исследователем питтсбургской университетской больницы имени Джона Хопкинса. Генриетта Лакс умерла в октябре того же года, а доктор Гай выделил одну конкретную клетку из эндотелия ее матки и начал с нее клеточную линию. Вскоре он обнаружил, что это уникально живучая культура, и начал делиться ею с исследователями по всему миру. Клетки, произошедшие от Генриетты Лакс, помогли человечеству при создании вакцины от полиомиелита, при определении числа хромосом в человеческой клетке (46), при первом клонировании человеческой клетки, наконец, при экспериментах с экстракорпоральным оплодотворением.

Надо сказать, что происхождение клеток Джордж Гай держал в тайне — оно стало известно только после его смерти.

Не только лечить, но и чинить


Но чтобы называться антибиотиком, SkQ1 необходимо соответствовать множеству критериев, таких как (1) способность подавлять жизненные процессы микроорганизмов в малых концентрациях и (2) мало повреждать или вовсе не повреждать клетки человека и животных. Сравнение SkQ1 c известными антибиотиками — канамицином, хлорамфениколом, ампициллином, ципрофлоксацином, ванкомицином и пр.— показало, что SkQ1 действует на бактерии в таких же, как они, или даже более низких концентрациях. Более того, при сравнительном исследовании действия SkQ1 на культуру клеток человека линии HeLa выяснилось, что в минимальной бактерицидной концентрации SkQ1 не оказывает практически никакого воздействия на клетки человека — а замечают клетки SkQ1 , когда концентрация антиоксидантного конъюгата становится более чем на порядок выше необходимой для бактерицидного действия.

Механизм действия SkQ1 на бактерии оказался подобен действию МНА на митохондрии, однако общее действие на прокариотическую и эукариотическую клетку различалось. Одна из главных причин — пространственное разделение процессов генерации энергии (исключая субстратное фосфорилирование) и процессов транспорта веществ внутрь клетки, что, по-видимому, представляет собой существенное эволюционное преимущество, которое часто обходят вниманием при рассмотрении выгод от сожительства протомитохондрии и протоэукариота. Так как у бактерий генерация энергии и транспорт локализованы на клеточной мембране, то падение потенциала вызывает, по-видимому, остановку сразу обоих процессов, что приводит к смерти микроорганизма. В эукариотической клетке процессы транспорта веществ внутрь клетки локализованы на клеточной мембране, а генерация энергии происходит в митохондриях, что позволяет эукариотической клетке выживать при летальных для бактерий концентрациях МНА. Кроме того, разность потенциала на мембране бактерии и эукариотической клетки различается в пользу бактерий — и это тот самый дополнительный фактор, аккумулирующий МНА на мембране бактерий.

Рассматривая механизм действия SkQ1 на бактерии, нельзя пройти мимо другого уникального свойства этого МНА — способности лечения поврежденных бактериями эукариотических клеток за счет антиоксидантных свойств. SkQ1 , действуя как антиоксидант, снижает уровень вредных активных форм кислорода, образующихся при воспалении, вызванном бактериальной инфекцией.

Таким образом, SkQ1 может быть признан уникальным гибридным антибиотиком широчайшего спектра действия. Дальнейшая разработка антибиотиков на его основе может позволить переломить ход войны человечества против все более совершенных микробов.

Павел Назаров, кандидат биологических наук, НИИ Физико-химической биологии им. А.Н. Белозерского МГУ


Вирусы и бактерии – великое противостояние

Создание современной технологии геномного редактирования, которая уже с успехом применяется на разных животных, растениях, грибах и бактериях, базируется на исследованиях бактериальных систем CRISPR-Cas. Изначально предполагалось, что они участвуют в ликвидации повреждений бактериальной ДНК, но в 2007 г. стало ясно, что истинное предназначение этих систем – борьба с вирусами бактерий, бактериофагами. Всего за девять лет наука проделала гигантский путь от раскрытия механизма бактериального иммунитета до редактирования геномов людей – в настоящее время уже проводятся первые эксперименты по редактированию ДНК человеческих эмбрионов. У бактерий имеются и другие «иммунные» механизмы, изучение которых, возможно, создаст предпосылки для новых прорывов в биомедицине

Бактериофаги – это вирусы, которые поражают только бактерий. В ходе инфекции они влияют на все процессы жизнедеятельности бактериальной клетки, фактически превращая ее в фабрику по производству вирусного потомства. В конце концов клетка разрушается, а вновь образованные вирусные частицы выходят наружу и могут заражать новые бактерии.

Несмотря на огромное число и разнообразие природных фагов, встречаемся мы с ними редко. Однако бывают ситуации, когда деятельность этих вирусов не остается незамеченной. Например, на предприятиях, где производят сыры, йогурты и другие молочно-кислые продукты, часто приходится сталкиваться с вирусной атакой на бактерии, сбраживающие молоко. В большинстве таких случаев фаговая инфекция распространяется молниеносно, и полезные бактерии гибнут, что приводит к значительным экономическим потерям (Neve et al. , 1994).

Именно благодаря прикладным исследованиям в интересах молочной промышленности, направленным на получение устойчивых к бактериофагам штаммов молочно-кислых бактерий, был открыт ряд механизмов, с помощью которых бактерии избегают инфекции. Параллельно были изу­чены способы, с помощью которых вирусы, в свою очередь, преодолевают бактериальные системы защиты (Moineau et al. , 1993).

Кто защищен – тот вооружен

На сегодня известно пять основных, весьма хитроумных механизмов защиты, которые бактерии выработали в непрестанной борьбе с вирусами: изменение рецептора на поверхности клетки; исключение суперинфекции; системы абортивной инфекции; системы рестрикции-модификации и, наконец, системы CRISPR-Cas.

В ходе эволюции происходила и сейчас происходит селекция бактерий, способных избежать гибели при инфицировании вирусами, что, в свою очередь, служит стимулом для бактериофагов совершенствовать свои агрессивные стратегии. Эта «гонка вооружений», длящаяся несколько миллиардов лет, т. е. ровно столько, сколько существуют сами бактерии и их враги, породила целый ряд изощренных механизмов защиты и нападения

Вирусная атака начинается с прикрепления фага к специфическому рецептору на поверхности бактериальной клетки, но при потере рецептора или изменении в его структуре связывания вируса не происходит. Бактерии могут менять рецепторы в зависимости от окружающих условий, таких как плотность и разнообразие микроорганизмов в среде, а также доступность питательных веществ (Bikard et al. , 2012). Любопытный пример - ​бактерии вида Vibrio anguillarum , которые способны формировать биопленку , т. е. плотный слой клеток, прикрепленный к какой-либо поверхности. У этой бактерии имеется своего рода «чувство кворума», за счет чего при увеличении плотности клеток у них понижается выработка рецептора, с которым может связываться вирус. В результате биопленка становится почти полностью устойчивой к заражению (Tan et al. , 2015).

Однако потеря рецепторов не всегда выгодна для бактерии, поскольку они выполняют разнообразные важные функции, например, транспорт питательных веществ или формирование межклеточных контактов (Lopez-Pascua et al. , 2008). В результате для каждой пары «бактерия-бактериофаг» в ходе эволюции находится оптимальное решение, обеспечивающее приемлемый уровень защиты при сохранении возможности роста бактерий в различных условиях среды.

Следующий защитный механизм – исключение супер­инфекции . Для бактериофагов известны два основных пути инфекции: литический , приводящий к быстрой гибели зараженной бактерии с высвобождением вирусного потомства, и затяжной лизогенный путь, когда наследственный материал вируса находится внутри генома бактерии, удваивается только с хозяйской ДНК, не причиняя клетке вреда. Когда клетка находится в состоянии лизогенной инфекции, то, с точки зрения «домашнего» вируса (профага ), ее заражение другим вирусом нежелательно.

Действительно, многие вирусы, встроившие свою ДНК в геном клетки, ограничивают вновь проникшего в клетку бактериофага («суперинфекцию») посредством специальных белков-репрессоров, не позволяющих генам «пришельца» работать (Calendar, 2006). А некоторые фаги даже препятствуют другим вирусным частицам проникнуть в инфицированную ими клетку, воздействуя на ее рецепторы. В результате бактерии – носительницы вируса имеют очевидное преимущество по сравнению с незараженными собратьями.

В 1978 г. за открытие ферментов рестриктаз швейцарский генетик В. Арбер и американские микробиологи Д. Натанс и Г. Смит были удостоены Нобелевской премии. Изучение систем рестрикции-модификации привело к созданию технологии молекулярного клонирования, которая широко применяется во всем мире. С помощью рестриктаз можно «вырезать» гены из генома одного организма и вставить в геном другого, получив химерную рекомбинантную ДНК, не существующую в природе. Различные вариации этого подхода используются учеными для изолирования отдельных генов и их дальнейшего изучения. Кроме того, он широко применяется в фармацевтике, например, для наработки инсулина или терапевтических антител: все лекарства такого рода созданы с помощью молекулярного клонирования, т. е. являются продуктом генной модификации

Во время инфекции все ресурсы бактериальной клетки направлены на производство новых вирусных частиц. Если рядом с такой клеткой будут находиться другие уязвимые бактерии, то инфекция быстро распространится и приведет к гибели большинства из них. Однако для таких случаев у бактерии имеются так называемые системы абортивной инфекции , которые приводят ее к запрограммированной гибели. Конечно, этот «альтруистичный» механизм не спасет саму зараженную клетку, но остановит распространение вирусной инфекции, что выгодно для всей популяции. Бактериальные системы абортивной инфекции очень разнообразны, но детали их функционирования пока изучены недостаточно.

К средствам противовирусной защиты бактерий относятся и системы рестрикции-модификации , в которые входят гены, кодирующие два белка-фермента – рестриктазу и метилазу . Рестриктаза узнает определенные последовательности ДНК длиной 4-6 нуклеотидов и вносит в них двуцепочечные разрывы. Метилаза, напротив, ковалентно модифицирует эти последовательности, добавляя к отдельным нуклеотидным основаниям метильные группы, что предотвращает их узнавание рестриктазой.

В ДНК бактерии, содержащей такую систему, все сайты модифицированы. И если бактерия заражается вирусом, ДНК которого не содержит подобной модификации, рестриктаза защитит от инфекции, разрушив вирусную ДНК. Многие вирусы «борются» с системами рестрикции-модификации, не используя в своих геномах последовательности, узнаваемые рестриктазой, – очевидно, что вирусные варианты с другой стратегией просто не оставили потомства.

Последней и в настоящее время самой интересной системой бактериального иммунитета является система CRISPR-Cas, с помощью которой бактерии способны «записывать» в собственный геном и передавать потомству информацию о фагах, с которыми они сталкивались в течение жизни. Наличие таких «воспоминаний» позволяет распознавать ДНК фага и эффективней противостоять ему при повторных инфекциях. В настоящее время к системам CRISPR-Cas приковано пристальное внимание, так как они стали основой революционной технологии редактирования геномов, которая в будущем, возможно, позволит лечить генетические заболевания и создавать новые породы и сорта сельскохозяйственных животных и растений.

Врага нужно знать в лицо

Системы CRISPR-Cas являются уникальным примером адаптивного иммунитета бактерий. При проникновении в клетку ДНК фага специальные белки Cas встраивают фрагменты вирусной ДНК длиной 25-40 нуклеотидов в определенный участок генома бактерии (Barrangou et al. , 2007). Такие фрагменты называются спейсерами (от англ. spacer – промежуток), участок, где происходит встраивание, – CRISPR-кассета (от англ. Clustered Regularly Interspaced Short Palindromic Repeats ), а сам процесс приобретения спейсеров – ​адаптацией .

Чтобы использовать спейсеры в борьбе с фаговой инфекцией, в клетке должен происходить еще один процесс, управляемый белками Cas, названный интерференцией . Суть его в том, что в ходе транскрипции CRISPR-кассеты образуется длинная молекула РНК, которая разрезается белками Cas на короткие фрагменты – защитные криспрРНК (крРНК), каждая из которых содержит один спейсер. Белки Cas вместе с молекулой крРНК образуют эффекторный комплекс , который сканирует всю ДНК клетки на наличие последовательностей, идентичных спейсеру (протоспейсеров ). Найденные протоспейсеры расщепляются белками Cas (Westra et al. , 2012; Jinek et al. , 2012).

Системы CRISPR-Cas обнаружены у большинства прокариот – бактерий и архей. Хотя общий принцип действия всех известных систем CRISPR-Cas одинаков, механизмы их работы могут существенно отличаться в деталях. Наибольшие различия проявляются в строе­нии и функционировании эффекторного комплекса, в связи с чем системы CRISPR-Cas делят на несколько типов. На сегодняшний день описаны шесть типов таких неродственных друг другу систем (Makarova et al. , 2015; Shmakov et al. , 2015).

Наиболее изученной является система CRISPR-Cas I типа, которой обладает излюбленный объект молекулярно-биологических исследований – бактерия кишечная палочка (Esсherichia coli ). Эффекторный комплекс в этой системе состоит из нескольких небольших белков Cas, каждый из которых отвечает за разные функции: разрезание длинной некодирующей CRISPR РНК, связывание коротких крРНК, поиск, а затем разрезание ДНК-мишени.

В системах II типа эффекторный комплекс образован единственным большим белком Cas9, который в одиночку справляется со всеми задачами. Именно простота и относительная компактность таких систем послужили основой для разработки технологии редактирования ДНК. Согласно этому методу, в клетки эукариот (например, человека) доставляют бактериальный белок Сas9 и крРНК, которую называют гидовой (гРНК). Вместо спейсера вирусного происхождения такая гРНК содержит целевую последовательность, соответствующую интересному для исследователя участку генома, например, где есть мутация, вызывающая какую-то болезнь. Получить же гРНК «на любой вкус» совсем несложно.

Эффекторный комплекс Cas9-гРНК вносит двуцепочечный разрыв в последовательность ДНК, точно соответствующую «гидовой» РНК. Если вместе с Cas9 и гРНК внести в клетку и последовательность ДНК, не содержащую мутацию, то место разрыва будет восстановлено по матрице «правильной» копии! Таким образом, используя разные гРНК, можно исправлять нежелательные мутации или вводить направленные изменения в гены-мишени. Высокая точность программируемого узнавания мишеней комплексом Cas9-гРНК и простота метода привели к лавинообразному росту работ по редактированию геномов клеток животных и растений (Jiang & Marraffini, 2015).

Гонка вооружений

В ходе эволюции бактерии и бактериофаги выработали ряд приспособлений, которые должны обеспечить каждому из участников «гонки вооружений» преимущество в борьбе с противником или возможность уклониться от его атаки.

Бактериофаги, как факторы среды, вызывают направленные изменения в геноме бактерий, которые наследуются и дают бактериям явное преимущество, спасая от повторных инфекций. Поэтому системы CRISPR-Cas можно считать примером ламарковской эволюции, при которой происходит наследование благоприобретенных признаков (Koonin et al. , 2009)

Что касается систем CRISPR-Cas, то если фаг обзаведется мутацией в протоспейсере, эффективность его узнавания эффекторным комплексом снижается, и фаг получает возможность заразить клетку. Но и бактерия не оставит без внимания такую попытку ускользнуть от CRISPR-Cas: в качестве ответной реакции она начинает с резко возросшей эффективностью приобретать новые дополнительные спейсеры из ДНК уже «знакомого» фага, пусть и мутировавшего. Такое явление, названное праймированной адаптацией, многократно повышает эффективность защитного действия систем CRISPR-Cas (Datsenko et al. , 2012).

Некоторые бактериофаги реагируют на наличие в бактериальной клетке систем CRISPR-Cas выработкой особых анти CRISPR-белков, способных связываться с белками Cas и блокировать их функции (Bondy-Denomy et al. , 2015). Еще одно ухищрение - обмен участков генома вируса, на которые нацелена система CRISPR-Cas, на участки геномов родственных вирусов, отличающихся по составу нуклеотидной последовательности (Paez-Espino et al. , 2015).

Результаты работ нашей лаборатории свидетельствуют, что зараженные клетки на самом деле погибают даже при наличии защиты CRISPR-Cas, но при этом они ограничивают численность вирусного потомства. Поэтому CRISPR-Cas правильнее относить к системам абортивной инфекции, а не к «настоящим» иммунным системам.

Благодаря постоянному совершенствованию биоинформатических алгоритмов поиска, а также включению в анализ все большего количества прокариотических геномов, открытие новых типов CRISPR-Cas систем является делом недалекого будущего. Предстоит также выяснить и детальные механизмы работы многих недавно открытых систем. Так, в статье, опубликованной в 2016 г. в журнале Science и посвященной анализу системы CRISPR-Cas VI типа, описан белок С2с2, образующий эффекторный комплекс с крРНК, который нацелен на деградацию не ДНК, а РНК (Abudayyeh et al. , 2016). В будущем такое необычное свойство может быть использовано в медицине для регулирования активности генов путем изменения количества кодируемых ими РНК.

Изучение стратегий борьбы бактерий с бактериофагами, несмотря на свою кажущуюся фундаментальность и отвлеченность от задач практической медицины, принесло неоценимую пользу человечеству. Примерами этого могут служить методы молекулярного клонирования и редактирования геномов – направленного внесения или удаления мутаций и изменения уровня транскрипции определенных генов.

Благодаря быстрому развитию методов молекулярной биологии всего лишь через несколько лет после открытия механизма действия систем CRISPR-Cas была создана работающая технология геномного редактирования, способная бороться с болезнями, ранее считавшимися неизлечимыми. Доступность и простота этой технологии позволяют рассматривать ее как основу для медицины, ветеринарии, сельского хозяйства и биотехнологий будущего, которые будут базироваться на направленных и безопасных генных модификациях.

Нет никаких сомнений, что дальнейшее изучение взаимодействия бактерий и их вирусов может открыть перед нами такие возможности, о которых мы сейчас даже не подозреваем.

Литература

Abudayyeh O. O., Gootenberg J. S., Konermann S. et al. C 2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector // Science. 2016. V. 353: aaf5573.

Barrangou R., Fremaux C., Deveau H. et al. CRISPR provides acquired resistance against viruses in prokaryotes // Science. 2007. V. 315. P. 1709–1712.

Bikard D., Marraffini L. A. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages // Curr. Opin. Immunol. 2012. V. 1 P. 15–20.

Bondy-Denomy J., Garcia B., Strum S. et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins // Nature. 2015. V. 526. P. 136–139.

Calendar R., Abedon S. T. The Bacteriophages // 2nd Ed., Oxford University Press. 2006.

Datsenko K. A., Pougach K., Tikhonov A. et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system // Nat. Commun. 2012. V. 3. P. 945

Jiang W., Marraffini L. A. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems // Annu. Rev. Microbiol. 2015. V. 69. P. 209–28.

Jinek M., Chylinski K., Fonfara I., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity // Science. 2012. V. 337. P. 816–821.

Koonin E. V., Wolf Y. I. Is evolution Darwinian or/and Lamarckian? // Biol. Direct. 2009. V. 4. P. 42.

Lopez-Pascua L., Buckling A. Increasing productivity accelerates host-parasite coevolution // J. Evol. Biol. 2008. V. 3. P. 853–860.

Makarova K. S., Wolf Y. I., et al. An updated evolutionary classification of CRISPR-Cas systems // Nat. Rev. Microbiol. 2015. V. 11. P. 722–736.

Moineau, S., Pandian S., Klaenhammer T. R. Restriction/modification systems and restriction endonucleases are more effective on lactococcal bacteriophages that have emerged recently in the dairy industry // Appl. Envir. Microbiol. 1993. V. 59. P. 197–202.

Neve H., Kemper U., et al. Monitoring and characterization of lactococcal bacteriophage in a dairy plant // Kiel. Milckwirtsch. Forschungsber. 1994. V. 46. P. 167–178.

Nuñez J. K., Harrington L. B., et al. Foreign DNA capture during CRISPR-Cas adaptive immunity // Nature. 2015a. V. 527. P. 535–538.

Nuñez J. K., Kranzusch P. J., et al. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity // Nat. Struct. Mol. Biol. 2014. V. 21. P. 528–534.

Nuñez J. K., Lee A. S., Engelman A., Doudna J. A. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity // Nature. 2015b. V. 519. P. 193–198.

Paez-Espino D., Sharon I., et al. CRISPR Immunity Drives Rapid Phage Genome Evolution in Streptococcus thermophilus // MBio. 2015. V. 6: e00262–15.

Shmakov S., Abudayyeh O. O., Makarova K. S., et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. // Mol. Cell. 2015. V. 60. P. 385–397

Tan D., Svenningsen S. L., Middelboe M. Quorum sensing determines the choice of antiphage defense strategy in Vibrio anguillarum. // mBio 2015. V. 6: e00627–15.

Westra E. R., van Erp P. B., Künne T., et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3 // Mol. Cell. 2012. V. 46. P. 595–605.

Не кажется ли вам, дорогие комрады, что практически все появляющиеся новые заболевания являются вирусными? ВИЧ,новые штаммы гриппа свиной, птичий и прочие болезни являются вирусными инфекциями. Да и старые известные болезни вдруг стали вызывать эпидемии там, где их отродясь не было? Чикунгунья встречалась в Африке, Азии и на Индийском субконтиненте. И вдруг появились заболевшие в Европе и Америке. В 2007 году передача болезни была впервые зарегистрирована в Европе - в локализованной вспышке болезни на северо-востоке Италии. С тех пор вспышки болезни были зарегистрированы во Франции и Хорватии. Еще одна опасность, которая грозит человечеству, - это появление в мире нового коронавируса. Коронавирус - это шаровидной формы вирус с выростами, одна из его форм привела к эпидемии атипичной пневмонии в 2003 году. Начиная с осени 2012 года, и сейчас идет по нарастающей, появился суперновый коронавирус, который по своей геномной структуре отличается от того, что в нашей стране называли атипичной пневмонией. Эти примеры можно перечислять долго....

А теперь вспомним босоногое детство. Чем болели? Ну, понятно, корь, ветрянка и простуда. Только она называлась ангиной. И носила, как правило, бактериальный характер. А сейчас, почему-то в основном ОРВИ. Острое Респираторное ВИРУСНОЕ заболевание. То есть грипп. Да, и раньше болели гриппом. И эпидемии были. Вспомним хотя бы испанку. Но в моем детстве я не помню, чтобы закрывали детский сад на карантин. Да и школу не закрывали. Бывало, что при температуре -25 занятия отменяли. Это счастье то какое! В школу не надо, значит целый день на катке шайбу гоняли. И в институте не было карантина. А сейчас чуть ли не каждый год эпидемия гриппа. С введением карантина в школах и детсадах. С чего бы это? Вроде бы и лекарства стали лучше и числом поболее. Не то что мамино варенье малиновое да горчичники. А болеют больше и тяжелее. Почему?

А всё дело в том, что мы бесконтрольным и бессистемным применением антибиотиков нарушили свою микробиоту. Дело даже не в том, что стали появляться новые резистентные штаммы бактерий. Дело в том, что убивая бактерий без разбора мы уничтожаем и полезных для нас. Которые защищают нас от вирусов. Об этой опасности писала ещё в прошлом веке наша замечательная ученая Агния Аркадьевна Морова. О её работах я писал на АШ Она ещё тогда предсказала, что будут появляться новые медленно текущие смертельные вирусные инфекции. И ВИЧ появился при её жизни! Гениальное предсказание... Тогда на её работы не обратили особого внимания. Тем более, что она не публиковалась в зарубежных англоязычных научных журналах. Но в последнее время стало появляться всё больше публикаций, в которых её идеи находят подтверждение. Вот пример http://www.pnas.org/content/108/13/5354 Не буду переводить полностью, скажу в двух словах. Микробиота носоглотки защищает нас от вируса гриппа. Если же при лечении гриппа использовать антибиотики, то состояние только ухудшается. То есть убивая антибиотиками симбионтные микроорганизмы мы только помогаем вирусу гриппа свалить нас с ног. Вот статья из "Саенс" http://science.sciencemag.org/content/357/6350/498.full Суть та же самая. Только речь идет уже о кишечных бактериях. Метаболиты, которые образуются в результате деятельности кишечных бактерий, стимулируют выработку интерферона – белка, который подавляет размножение вируса. А мы их антибиотикам! То есть своих же помощников уничтожаем....

Как же работает эта защита? Начнем с того, что мы не хозяева планеты. Мы гости в мире вирусов и бактерий. Они появились на многие миллиарды лет раньше нас. И, скорее всего, нас также переживут, как пережили первых хордовых, динозавров и мамонтов. Многие миллиарды лет до нашего появления на планете царствовали вирусы. Или что-то на них похожее, типа прионов. Живыми их назвать язык не поворачивается. Но эти безмозглые твари научились копировать свой генетический материал и размножаться. На том, что им Бог послал в виде первичного бульона. И все разнообразие жизни пошло от этих крохотных, видимых только в электронный микроскоп частичек. Постепенно они стали эволюционировать и появились бактерии. Которым уже не стало хватать первичного бульона. И они научились питаться вирусами. А чего добру пропадать? Плавают тут разные куски белковых молекул... давай их на закуску. Справедливости ради надо сказать, что не только бактерии научились питаться вирусами. Но и некоторые вирусы оказались не прочь ими закусить. Они сохранились до сих пор. Называются бактериофаги. Кстати, лечение бактериофагами, рекламируемое ныне зарубежными клиниками, началось во времена СССР. Впервые их обнаружил в 1915 году британский бактериолог Фредерик Творт. Через два года учёный из Института Пастера Феликс Д"Эрель сделал доклад, в котором сообщил, что открыл «невидимый микроб», поражающий дизентерийную палочку. Он же впервые применил термин «бактериофаг», то есть «поедатель бактерий». Этим термином мы пользуемся и по сей день. Хотя впервые бактериофаги были обнаружены западными учеными, активно развиваться фаготерапия стала в СССР. В числе первопроходцев этого направления медицины был Георгий Элиава. Открытый им в 1920-е годы в Тбилиси институт, который занялся исследованиями бактериофагов для терапевтического применения, стал даже мировым лидером в этой области. Кстати, Феликс Д"Эрель тоже несколько лет проработал в этом институте, но после того, как Элиава был расстрелян как «враг народа» в 1930-х, француз поспешил покинуть СССР. Но бактериофаги это тема для отдельной статьи. Вернемся к нашим баранам бактериям и вирусам.

Кстати, не только человека, но и даже комаров можно защитить от вирусов при помощи бактерий. Есть такая нехорошая болезнь лихорадка Денге. От лихорадки Денге ежегодно страдают более 50 миллионов человек. Вирус распространяется желтолихорадочными комарами, а лекарство от него до сих пор не найдено - медики лишь снимают симптомы болезни и проводят поддерживающую терапию. Ученые заразили яйца самок комаров бактерией Wolbachia pipientis , которая подавляет действие на комаров почти всех вирусов. Биологи предположили, что свойства бактерии распространяются и на вирус Денге: если комары сами не смогут заразиться им, у них не получится передать его людям. В результате подобных действий число случаев заражения вирусом в австралийском городе Таунсвилл упало в 12,5 раза. Об этом говорится в статье, опубликованной в журнале Gates Open Research .

Получается интересная картина. Если мы имеем в организме определенные бактерии, то нам не страшны вирусы. Долгое время нашего развития так и было. Да, были вирусные инфекции. Но они были распространены в отдельных областях планеты, где местное население выработало к ним иммунитет. Или обладало таким набором бактерий, которые помогали справиться с вирусами. Не всем. Более слабые погибали, остальные получали иммунитет. То есть масштабных эпидемий было сравнительно немного. Только в случае резкого мутирования вируса, как это было с испанкой. А таких заболеваний как ВИЧ вообще не существовало. Они стали появляться тогда, когда люди стали уничтожать и менять свою микробиоту. Что и повлекло за собой всплеск вирусных заболеваний.

Поэтому сейчас стоит задача восстановить нормальную микробиоту. Другое дело, как узнать, какие бактерии помогают бороться с какими вирусами? Похоже, мы об этом никогда не узнаем. Так как под действием антибиотиков наши родные симбионтные бактерии либо исчезают, либо переходят в L-форму. Которая уже не дает нужных нам веществ. Надо сказать, что работы по бактериальной защите от вирусов ведутся во всем мире. Мы тоже по мере сил и возможностей в ней участвуем. На сегодняшний день доказано документально, что введение в организм человека симбионтных бактерий стрептококка приводит к резкому уменьшению вирусной нагрузки на организм. Вплоть до не определяемых показателей. Вот анализы человека до лечения.

А вот после лечения

Loading...Loading...