Рельсовая сталь и маркировка рельсов. Рынок рельсов: российская продукция вытесняет импорт

Рельса – это металлическая балка, имеющая оригинальное сечение. Она применяется для создания опоры, по которой передвигается железнодорожный транспорт. Впервые рельсы начали изготавливать в Древнем Риме, но тогда для их изготовления использовалось дерево, а расстояние между ними было строго 143 см. Установка рельс производится в параллельной плоскости относительно друг другу. В результате образуется «двухниточный путь».

Основная задача рельс – направлять колеса транспорта и принимать на себя нагрузку с последующим ее распределением на нижние элементы верхнего пути. В случае использования составов в зонах, передвижение в которых невозможно без электрической тяги, рельсы играют роль проводника тока, а для зон, применяющих автоблокировку, рельсы являются проводником.

Материал изготовления

В большинстве случаев для изготовления рельсов используется углеродистая сталь. На качество этого материала оказывают влияние некоторые факторы, например, микроструктура и макроструктура стали, ее химическое строение и т. д. Наличие углерода придает рельсе большей долговечности и надежности.

Однако избыток углерода в составе стали может оказать негативное воздействие. При его чрезмерном количестве значительно повышается хрупкость. Именно поэтому при добавлении углерода стоит позаботиться и о том, чтобы структура стали балы максимально прочной.

Для повышения качества исходного материала применяются и другие вещества. В последнее время все чаще прибегают к обработке рельсов марганцем. Это повышает устойчивость металла к повреждениям механического характера, делает его более долговечным и вязким. Добавление кремния в состав стали повышает ее износоустойчивость и твердость. Также можно использовать титан, ванадий и цирконий. Эти микроэлементы способны значительно улучшить качественные характеристики стали.

Ни в коем случае нельзя добавлять серные и фосфорные добавка, так как они делают сталь более уязвимой к ломке и повышают хрупкость. Очень часто в деталях, изготовленных с добавлением этих веществ, можно наблюдать наличие трещин и разломов.

Выше уже шла речь о том, что сталь имеет свою микроструктуру и макроструктуру. В качестве основного материала для первой структуры используется перлит. Его форма напоминает пластины, содержащие феррит. Добиться однородного состава стали можно с помощью ее закаливания, то есть обработать ее при очень высокой температуре. Закаливание повышает износостойкость, долговечность, надежность, жесткость и вязкость металла. Для макроструктуры наличие лишних веществ или пустот является недопустимым.

Физические характеристики рельсов

Настоящий профиль рельсов не всегда был таким. Он терпел изменения с течением времени. История помнит угловые, двухголовые, грибовидные, широкоподошвенные и другие рельсы.

Конструкция современного широкоподошвенного рельса включает в себя подошву, головку и шейку, которая выступает в качестве соединительного элемента между этими двумя частями. Центральная часть делается немного выпуклой для того, чтобы нагрузка с колес переносилась на центральную область рельса. Места соединения шейки с подошвой и головкой имеют плавные формы. Для снятия напряжения с шейки ее делают в виде кривой. Чем шире основание подошвы рельса, тем выше ее боковая устойчивость.

Существует несколько стандартных размеров рельсов. Для Российской Федерации свойственно выпускать рельсы длинной 12,5, 25, 50, 100 м.

Также существует возможность выпускать рельсы и меньшей длины. Они используются на неровных участках железнодорожного пути. Длина бесстыкового пути составляет не менее 400 м и может достигать перегонной длины. Чем выше длина рельса, тем меньше сопротивление передвижения транспорта и, соответственно, ее износ. Сохранение стали при переходе на бесстыковой путь достигает 4 т на 1 км пути. Это возможно благодаря отсутствию элементов крепления в области стыков рельсов.

При расчете мощности материала необходимо учитывать такой параметр, как удельный вес на 1 м рельса. Его измерение принято проводить в килограммах.

Еще один элемент железнодорожного пути – шпалы. Они играют роль крепежного элемента. Благодаря развитию современных технологий появилась возможность производить шпалы не только из железобетона и дерева, но и из стали или пластика.

При расчете стоимости одного рельса учитывается его удельный вес, габаритные параметры (длина и ширина), твердость и степень износоустойчивость.

Типы рельсов

Для того чтобы правильно подобрать необходимы тип рельсов необходимо рассчитать загруженность линии и среднюю скорость, с которой по ней будет передвигаться транспорт. Для примера возьмем массивный рельс с большим весом. Он положительно влияет на износоустойчивость шпал и снижает экономические затраты на обслуживание линии за счет увеличения ее долговечности.

На сегодняшний день существуют такие виды рельсов:

  • Железнодорожные. Этот тип считается наиболее популярным и востребованным. Вес 1 метра такой рельсы составляет 50-65 кг, длина – 12,5 или 50 м.
  • Узкоколейные. Используются при необходимости создания узкого межрельсового пространства. Этот тип рельсов широко используется в горнодобывающей промышленности и в других местах с ограниченной проходимостью.
  • Рудничные. С их помощью производится укладка бесстыковых путей. Также они очень популярны в промышленной сфере.
  • Трамвайные. Название говорит само за себя. Не рассчитаны на большую загруженность линии. Эти рельсы весят относительно немного, что приводит к их быстрому износу.
  • Крановые. Применяются в тех местах, где необходимо создание путей для перемещения подъемного крана.
  • Подкрановые. Такие рельсы считаются наиболее тяжелыми. В некоторых случаях допускается укладка сразу в несколько рядов.
  • Рамные. Их используются в местах постройки переводных механизмов.
  • Контррельсовые. Используются при работе в верхних конструкциях ж/д путей.
  • Остряковые. Сфера применения аналогична контррельсовому типу. Вид остряковых рельсов ОР43 можно выделить отдельно. Он используется для возведения ж/д путей.

Где купить данные виды рельс? Рекомендуем покупать у надежный поставщиков. В Екатеринбурге рельсы можно приобрести в торговой компании «Рельс-Комплект» . Компания реализует ж/д продукцию высокого качества от ведущих отечественных заводов, отвечающую нормам ГОСТов.

Классификация рельсов осуществляется по нескольким параметрам:

  • Наличию отверстий, предназначенных для соединительных элементов (болтов).
  • Способу выплавления стали.
  • Качеству. По этому параметру рельсы подразделяются на термоупрочненные и нетермоупрочненные.

Эти характеристики напрямую влияют на стоимость рельса.

Условные обозначения

На каждой рельсе присутствует маркировка, состоящая из нескольких групп цифр и букв. Каждая буква означает определенный параметр:

  • А – тип рельса.
  • В – категория качества.
  • С – марка используемой стали.
  • D – протяженность рельса.
  • Е – наличие отверстий под болты.
  • F – ГОСТ.

Например, маркировка рельса Р65-Т1-М76Т-25-3/2 ГОСТ Р 51685-2000 говорит о том, что это рельс железнодорожного типа категории Т1. Для его изготовления использовалась сталь марки М76Т. Длина рельса составляет 25 м. Имеет 3 отверстия для болтов на каждом конце. Соответствует указанному стандарту ГОСТ.


Благодаря увеличению закупок со стороны ОАО «РЖД» российское производство рельсов по итогам 10 месяцев 2016 года выросло более чем на треть.

Пережив спад 2014-2015 гг., отечественная отрасль по производству рельсов начала восстанавливаться: с января по октябрь выпуск рельсов в России увеличился на 34,1%, достигнув 991,5 тыс. т. Оживлению в отрасли способствует реализация инвестиционной программы ОАО «РЖД», в рамках которой к 2030 году планируется построить 13,8 тыс. км дорог тяжеловесного движения, а также 10,5 тыс. км скоростных и высокоскоростных железнодорожных магистралей - это позволит увеличить грузооборот в полтора раза, а пассажирооборот - на 60%. Размер капиталовложений составит, по меньшей мере, 12,6 трлн руб.

Важным событием для рынка стал ввод в строй новых рельсобалочных станов на предприятиях «ЕВРАЗ-Холдинга» и «Мечела», позволивший наладить в России выпуск 100-метровых рельсов для высокоскоростных магистралей. До 2013 года такие рельсы импортировались из Австрии и Японии, однако модернизация производственных мощностей на отечественных предприятиях дала возможность полностью отказаться от зарубежной продукции.



Для российского рынка рельсов, как и для других сегментов рынка металлопроката, характерен рост цен на продукцию: в 2015 году средняя стоимость тонны рельсов от производителей увеличилась на 28,5%, а в январе-октябре 2016 года - на 6,8%, достигнув 32,2 тыс. руб. Как результат, в стоимостном выражении производство рельсов в России за первые 10 месяцев 2016 года выросло на 43% (до 29,4 млрд руб.).

Рост цен на металлопрокат вызван повышением тарифов на электроэнергию, началом строительного сезона в РФ и вводом антидемпинговых пошлин в отношении российского и китайского проката в США и ЕС, отмечают аналитики IndexBox. К числу факторов также можно отнести удорожание металлургического кокса и повышение цен на сталь в Китае.


На протяжении долгого времени выпуск рельсов осуществлялся только на предприятиях холдинга «ЕВРАЗ» - ОАО «ЕВРАЗ ЗСМК» (Кемеровская область) и ОАО «ЕВРАЗ НТМК» (Свердловская область). С 2013 года список производителей пополнило ПАО «Мечел» (Челябинская область), что привело к увеличению доли Уральского федерального округа в общероссийском выпуске рельсов (Рисунок 4).


На российском рынке рельсов наблюдается избыток производственных мощностей, полагает доцент РОАТ МИИТ Фарид Хусаинов. В этой связи российские производители рассматривают возможности выхода на зарубежные рынки, в первую очередь, стран ЕС, однако для этого их продукция должна пройти сертификацию в Европе. Другим серьезным препятствием для выхода на европейский рынок являются сильные позиции местных игроков, таких как Thyssen Krupp Stahl (Германия), Voestalpine Schienen Gmbh (Австрия) и Tata Steel (Великобритания).

Cтраница 1


Изготовление рельсов из более мягких сталей приводит к быстрому их износу, местным выбоинам, что нарушает работу кранов, а из более твердых - может привести к авариям вследствие излома рельсов.  

Допускается ограниченное изготовление рельсов длиной 12 5 м для уравнительных пролетов бесстыкового пути. На всех постоянных путях допускается устройство бесстыкового пути, а также сварка рельсовых звеньев.  

Технология изготовления рельсов должна гарантировать отсутствие в них флокенюв и местных скоплений неметаллических включений, вытянутых вдоль направления прокатки.  

Типичные положения орозвучивания при контроле рельсов.| Усталостное разрушение с овальным пятном (поперечная трещина в головке рельса.  

Контроль при изготовлении рельсов обычно выполняется после правки. Он проводится по соображениям внутризаводского контроля качества или по требованию заказчика - управления, железных дорог.  


В ближайшие годы ожидается изготовление рельсов из кислородно-конверторной стали.  


Подобные стали используются для изготовления рельсов, вагонных осей, колес и пр. Стали с добавкой циркония отличаются повышенной твердостью и вязкостью и применяются для изготовления бронебойных плит и щитов.  

В результате внедрения новых стандартов (технических условий) на изготовление рельсов стойкость их против износа по сравнению со стойкостью рельсов довоенного производства значительно повысилась. Рельсы отечественного производства по качеству не уступают лучшим образцам рельсов зарубежных дорог.  

Фасонный прокат применяется в различных областях народного хозяйства: для изготовления рельсов железнодорожного транспорта, углобульб и тавробульб для судовых конструкций, тавровых и зетовых элементов для строительных конструкций. Сортамент фасонных прокатных профилей весьма разнообразен.  

При утверждении проекта строительства Петербургско-Московской железной дороги в 1842 г. возникла необходимость организовать изготовление рельсов на русских заводах. Осенью 1843 г. начал работать рельсопрокатный стан на Пожевском заводе Всеволожских производительностью 1200 - 1400 пудов рельсов в сугки. В это же время на Выксун-ских заводах Шепелева были выпущены первые образцы рельсов. Для их изготовления крицы из пудлинговой печи обжимали под жомом (машина для обжима криц при помощи валков) и затем прокатывали в валках с одного нагрева. Подготовительная операция осуществлялась на трех парах валков в 14 ручьев, которые приводились в движение водяным колесом.  

Это обстоятельство (наряду с другими) учитывают при выборе надлежащей марки стали для изготовления рельсов.  

Стали, легированные 1 0 - 2 % марганца и 0 5 % углерода, применяются для изготовления рельсов, валов моторов, зубчатых колес и проч. Из легированных сталей, содержащих 10 - 15 % Мп и 0 9 - 1 4 % С, изготавливают детали, обладающие большим сопротивлением удару и истиранию.  

В настоящее время готовую сталь разливают в формы (изложницы), где она застывает в виде слитков. Слитки перед прокатом помещают в специальные нагревательные колодцы для подогрева до необходимой температуры. Разогретый слиток стали обрабатывают первоначально на блюминге, придавая слитку форму болванки прямоугольного сечения, называемую блюмсом. Блюмс передают далее в прокатный стан, где он проходит через валки из ручья в ручей; при этом он вытягивается в длину и постепенно меняет форму, принимая по выходе из последнего ручья профиль заданных размеров. Полученную таким образом полосу затем разрезают на рельсы нормальной длины, производят выправку отдельных искривлений, высверливают отверстия для болтов.

Технология изготовления рельсов постоянно совершенствуется. Улучшен процесс изменения поперечного сечения блюмса в последовательно проходимых им ручьях прокатного стана (так называемая калибровка рельсов). При прокате по новой калибровке обеспечивается более интенсивная обработка металла подошвы рельсов, что резко сокращает количество волосовин в подошве, получающихся литые заготовки от раскатывания подкорковых пузырей.

Осуществлен ряд мер по удалению усадочной раковины и околоусадочной рыхлости металла. Введено замедленное охлаждение рельсов после проката в закрытых коробах и охлаждающих колодцах, позволяющее предупреждать образование флокенов. Очень важно, чтобы сталь не имела флокенов - мелких внутренних трещин, возникающих в связи с выделением водорода при остывании стали. Существенное повышение качества рельсов даёт совершенствование способа раскисления рельсовой стали. В процессе варки стали происходит некоторое окисление железа. Для его восстановления в сталь добавляют алюминий. Но, соединяясь с кислородом, алюминий образует неметаллические включения (глинозем), загрязняющие сталь и снижающие стойкость рельсов против появления трещин.

Раскислителями являются комплексные ферросплавы, содержащие кремний, ванадий или магний и титан. Применение этих раскислителей повышает стойкость рельсов против появления трещин контактно-усталостного характера на 20...25%. Повышение эксплуатационной стойкости рельсов достигается улучшением чистоты стали, термическим упрочнением и легированием.

      Термоупрочнение стали

Выполняется следующими способами:

    объёмная закалка с охлаждением в масле после печного нагрева;

    поверхностная закалка головки рельсов водовоздушной смесью после нагрева её токами высокой частоты;

    используется технология закалки рельсов в расплавах солей.

Заключающаяся в том, что рельсы нагреваются до температуры 840...870°С в проходной печи (40...60 мин), а затем охлаждаются (8... 40 мин) в расплаве солей калиевой селитры и нитрата натрия, содержащих 0,6...0,7% воды, до температуры 290...295 °С. Последующее охлаждение рельсов происходит на воздухе. Остатки солей с поверхности рельсов смывают водой.

Способ закалки рельсов в солях имеет преимущества перед упрочнением в масле. Во-первых, высокая температура солей предупреждает искривление рельсов, вследствие чего существенно уменьшается холодная правка рельсов. Во-вторых, в расплаве солей в интервале температур структурных превращений рельсы остывают быстрее, чем в масле, что улучшает прочность, пластичность и вязкость стали. В-третьих, при этом способе закалки можно изготовлять рельсы из низколегированной стали с прочностью выше 1400 МПа.

Отпадает также необходимость в громоздких отпускных печах, которые используются при закалке рельсов в масле. Рельсы после полного остывания подвергаются холодной правке на роликоправильных машинах и штемпельных прессах. Перед холодной правкой допускается равномерная общая по всей длине кривизна рельсов в вертикальной и горизонтальной плоскостях со стрелой прогиба не более 1/60 длины рельса. После холодной правке к рельсу предъявляются требования по ряду показателей.

2 КАТАЛОГ ТИПОВ РЕЛЬС И ХАРАКТЕРИСТИК

Тип рельса

Временное сопротивление, н/мм2(кгс/мм2)

Предел текучести, н/мм2(кгс/мм2)

Относительное удлинение, %

сужение, %

Ударная вязкость,kcuдж/см2 (кгсм/см2)

Твердость на поверхности катания, нв

Таблица 2.2 - Химический состав стали

Марка стали

Массовая доля элементов, v р Не более

0,03-0,15 0,025

Таблица 2.4 – Химический состав

Марка стали

Массовая доля элементов, %

Не более

Рельсы железнодорожные типа рп50, рп65, рп65к, р43 для путей промышленного железнодорожного транспорта

Таблица 2.5 - Механические свойства

Твердость на поверхности катания термоупрочненных рельсов 311-420 НВ.

Таблица 2.6 - Химический состав стали

Тип рельса

Марка стали

Не более

Не более

Рельсы рамные типа р65. Предназначены для изготовления соединений и пересечений железнодорожного пути

Марка стали

Не более

Рельсы железнодорожные узкой колеи шахт р18, р24

Таблица 2.10 - Механические свойства

Верхнее строение пути состоит из рельсов, скреплений, рельсовых опор (чаще всего в виде шпал); балласта и дополнительных элементов в виде противоугонов, стяжек и других деталей. Кроме того, к верхнему строению относят стрелочные переводы, мостовое полотно и ряд специальных устройств, например путевые заграждения.

В любых климатических зонах и в любое время года конструкция верхнего строения пути должна быть прочной, устойчивой, стабильной, износостойкой, экономичной, обеспечивающей безопасное и плавное движение поездов с большими скоростями.

Рельсы - самый дорогой и самый ответственный элемент верхнего строения пути. К рельсам предъявляют много требований. Чтобы колеса подвижного состава имели меньшее сопротивление движению, нужно, чтобы рельсы были гладкими. С другой стороны, для того чтобы локомотив мог реализовать максимальную силу тяги, желательно увеличить сцепление его колес с рельсами, т. е. рельсы должны иметь шероховатую поверхность. В связи с этим в необходимых случаях под колеса локомотива на рельсы подается песок из специальных устройств (песочниц).

Для меньшего износа рельсы нужно делать из твердой стали. Однако очень твердая сталь может быть хрупкой, что увеличивает опасность излома. Таким образом, рельсы должны быть и твердыми и вязкими. Это противоречие разрешается на основе рационального подбора химического состава стали и с помощью термической обработки. Рельс должен быть достаточно жестким, чтобы лучше сопротивляться изгибу под колесами. В то же время при большой жесткости рельса будут возрастать так называемые динамические силы от колес (т. е. силы в процессе движения). Это противоречие стараются разрешить за счет рационального подбора формы и размеров рельса.

Нельзя забывать, что рельсы - изделие массового производства, поэтому они должны быть достаточно дешевыми.

Форма современного рельса напоминает двутавровую балку, которая лучше других сопротивляется изгибу в вертикальной плоскости.

На русских железных дорогах первый стандарт на рельсы был принят в 1903 - 1907 гг. Было утверждено четыре типа: 1-а, 2-а, 3-а и 4-а с массой соответственно 43,57; 38,42; 33,48; 30,89 кг в 1 м. В 1947 г. и последующих годах были утверждены новые стандарты, устанавливающие следующие типы рельсов: Р43, Р50, Р65 и Р75 с массой соответственно 44,65; 51,67; 64,72; 74,41 кг в 1 м. Буква Р означает слово «рельс», а число указывает приблизительную массу 1 м рельса. В настоящее время рельсы типа Р43 прокатываются лишь для путей промышленного транспорта, а также по заявкам МПС для одиночной смены рельсов Р43, лежащих в пути, и для стрелочных переводов.

Поперечные профили современных стандартных рельсов (рис. 2.1) во многом отличаются от рельсов первых стандартов, принятых в начале нынешнего столетия.

Головка рельса очерчена по коробовой кривой (т. е. кривой переменной кривизны), в результате чего достигаются центральность в передаче усилий от колес и достаточная ширина их контактного следа. Радиус кривой в месте перехода от верха рельса к его боковой грани принят 15 мм, что близко к выкружке на колесе в месте начала гребня. Это затрудняет всползание колеса на рельс. Боковые грани головки наклонены (1:20), что уширяет головку снизу и увеличивает опорную площадь под накладки. Шейка рельса очерчена по кривой переменного радиуса с тем, чтобы сделать утолщение при переходе к головке и подошве. Подошва сделана более мощной по сравнению с рельсами старых стандартов, чтобы исключить опасность ее излома при изгибе.

Следует подчеркнуть, что ширина подошвы и высота пазухи¹ сделаны одинаковыми для рельсов типов Р65 и Р75. Это очень удобно при ведении путевого хозяйства, так как дает возможность применять промежуточные и стыковые скрепления одни и те же для обоих типов рельсов.

Качество рельсов имеет очень большое значение в обеспечении длительных сроков их службы и безопасности движения поездов. Министерство путей сообщения поставило перед металлургами задачу - выпускать такие рельсы, чтобы они до замены могли пропустить груз массой 1200 - 1500 млн. т брутто в прямых и 500 млн. т брутто в кривых малых радиусов (600 м и менее).

На металлургических комбинатах, где прокатывают рельсы, сталь варят либо в мартеновских печах (несколько часов), либо в конвертерах (15-18 мин) кислородно-конвертерным способом. Сталь разливают в изложницы. После остывания образуются слитки. Их разогревают и подают на блюминги, где происходит их предварительное обжатие. Полученная заготовка далее поступает в прокатные станы. Постепенно стальная полоса пропускается через «ручьи» стана и получает профиль рельса.

Мартеновская сталь лучше конвертерной потому, что длительный процесс варки стали позволяет лучше регулировать ее состав, в ней меньше фосфора и серы, меньше вредных примесей.

Рельсы из стали, изготовленной кислородно-конвертерным способом, содержат больший процент фосфора и серы и, следовательно, обладают большей хладно- и красноломкостью (т. е. соответственно опасностью излома при низких и высоких температурах). По этой причине на магистральных линиях рельсы, изготовленные этим способом, вновь не укладываются (применяются на подъездных путях промышленности).

Качество рельсов контролируют по химическому составу, микро- и макроструктуре металла, прочности, прямолинейности² и другим показателям (прочность обычно оценивается величиной временного сопротивления образца при его растяжении).

В состав рельсовой стали, помимо железа, входят следующие химические элементы: углерод³ (0,67 - 0,82%), марганец (0,75 - 1,05%), кремний (0,13 - 0,28%), фосфор (до 0,035%), сера (до 0,045%).

Углерод способствует повышению твердости, т. е. износостойкости, стали. Даже небольшое увеличение содержания углерода с 0,42 до 0,62% = приводит к росту износостойкости стали почти в 2 раза.

Марганец - очень полезная добавка, увеличивающая как износостойкость, так и ударную вязкость (т. е. обеспечивающая малую хрупкость). Кремний - добавка, повышающая твердость и, следовательно, износостойкость стали. Фосфор и сера - вредные добавки. Их наличие связано с тем, что они содержатся в природных железных рудах. В рельсах, которые выпускает ждановский металлургический комбинат «Азовсталь», на базе керченских руд содержится мышьяк (0,15%). Его присутствие в таких размерах не ухудшает сталь.

При производстве стали происходит частичное выгорание примесей из чугуна. Вместе с примесями горит и железо, превращаясь в закись, которая растворяется в жидком металле и может сделать его непригодным для дальнейшей обработки. Поэтому металл перед разливкой в изложницы приходится «раскислять», т. е. освобождать от закиси железа путем добавки в него особых раскислителей, в качестве которых используются Al, SiCa и др.

Раскислители, прореагировав с кислородом, образуют окислы, основная часть которых удаляется со шлаком. Остатки окислов раскислителей образуют неметаллические включения (например, глинозем), которые, раскатываясь вдоль направления проката, образуют дорожки или строчки. Эти включения отличаются высокой твердостью (на порядок выше основного материала), поэтому, попадая в зону максимальных напряжений, они являются очагами образования усталостных трещин.

Исследования последних лет показали, что исключение из раскислителей алюминия позволяет существенно уменьшить длину строчечных неметаллических включений. Поэтому с 1 июля 1981 г. на рельсы введен новый ГОСТ 24182 - 80, отличительная особенность которого заключается в том, что с этого времени новые рельсы делятся на 1 и 2 группы. Рельсы 1 группы изготавливают из мартеновской стали, раскисленной в ковше комплексными раскислителями без применения раскислителей, образующих в стали строчечные неметаллические включения. Наилучшими из них в настоящее время являются железованадийкремнекальциевые раскислители, которые применяет Кузнецкий металлургический комбинат. Возможно также использование кремнемагниетитановых раскислителей.

Рельсы 2 группы изготавливают из мартеровской стали, раскисленной алюминием или марганцевоалюминиевым сплавом.

Применение комплексных раскислителей для изготовления рельсов 1 группы позволяет уменьшить длину строчек неметаллических включений с 8 мм (во 2 группе) до 2 мм (в 1 группе). В связи с этим стойкость и надежность рельсов повышается примерно на 20 - 30%.

Для дальнейшего улучшения химического состава рельсовой стали проводились опыты по введению в нее легирующих добавок, например хрома, что привело к увеличению износостойкости рельсов, но не дало существенного эффекта против возникновения контактно-усталостных повреждений. Опыты со сталью, имеющей повышенный процент кремния (0,49 - 0,64%), показали, что волнообразный износ таких рельсов (см. подробнее в п. 2.3) становится меньше, чем у рельсов стандартного производства.

Что такое микроструктура металла ? Если вырезать образец рельсовой стали, отшлифовать его, протравить раствором азотной кислоты в спирте, а затем рассмотреть этот «шлиф» через микроскоп, то будет видна его микроструктура. Она может быть различной: то равномерное или неравномерное распределение черных и белых пятнышек, то какое-то игольчатое строение и т. д. При этом различают структуры: аустенит, мартенсит, сорбит и т. д. Оказывается, что качество рельсов значительно возрастает после их закалки. Лучшими свойствами (износостойкостью и вязкостью) обладают структуры сорбит закалки и троостит закалки.

Многие годы велась опытная закалка рельсов только по концам, а затем по всей длине. Наибольшего успеха достигли на Нижнетагильском металлургическом комбинате, где применяется объемная закалка, т. е. закалка всего рельса (нагрев в печах, а затем охлаждение в масле). Сроки службы рельсов, закаленных таким образом, возросли почти в 1,5 раза по сравнению с незакаленными. Хорошие результаты получены на комбинате «Азовсталь», где применяется поверхностная закалка головки рельсов водовоздушной смесью после нагрева токами высокой частоты. Закалка рельсов с печного нагрева водой также применяется на Днепровском металлургическом комбинате имени Ф. Э. Дзержинского.

Проводятся исследования вариантов технологии создания особо прочных рельсов, в частности изготовления рельсов, у которых головка сделана более твердой, чем шейка и подошва (с помощью особого способа закалки). Твердость характеризуют единицами по Бринеллю. Так, если шейка и подошва будут иметь 331 388 единиц, то головка 450 единиц.

Предусмотрены опыты по созданию термоупрочненных рельсов из заэвтектоидной стали (сталь, содержащая углерода более 0,82%), а также рельсов из биметалла, т. е. двухслойных из разных видов сталей.

Оценка качества рельсов проводится также по макроструктуре стали. Эту структуру можно видеть на «шлифе» рельса невооруженным глазом. К хорошей макроструктуре относят мелкозернистую структуру, в которой нет раковин, шлаковин, плен, волосовин, неметаллических включений. Особенно важно, чтобы сталь не имела флокенов (внутренних мелких пустот, возникающих в связи с выделением водорода при остывании стали).

Для улучшения условий эксплуатации пути МПС систематически увеличивает среднюю массу рельсов на сети железных дорог. Почему это выгодно, видно из следующих цифр. Например, рельсы типа Р65 тяжелее рельсов типа Р50 на 26,3%, а срок их службы на 43% больше. Укладка рельсов Р65 вместо Р50 дает экономию металла на 15%. Текущее содержание пути с рельсами Р65 обходится на 15 - 20% дешевле, чем с рельсами Р50, а с рельсами Р75 - на 20 - 25% дешевле, чем с рельсами Р65. Одиночное изъятие рельсов Р75 по дефектам на 30 - 40% меньше, чем рельсов Р65.

Долгие годы стандартная длина рельсов на наших железных дорогах составляла 12,5 м. Очевидно, чем больше длина рельсов, тем меньше стыков на каждом километре пути. Учитывая, что стык - сложное и напряженно работающее место в пути, уже давно стремились увеличить длину рельсов. В настоящее время стандартная длина рельсов 25 м. В пути укладывают рельсы длиной 25 м, как выпускаемые заводами, так и сваренные из рельсов длиной 12,5 м и другой длины.

Рельсы длиной 12,5 используют лишь в следующих случаях: в качестве инвентарных при укладке рельсо-шпальной решетки с железобетонными шпалами (с последующей заменой плетями бесстыкового пути), для стрелочных переводов и в качестве уравнительных рельсов на бесстыковом пути.

В кривых участках пути возникает необходимость в укороченных рельсах (см. п. 4.9). В связи с этим специально изготавливают рельсы длиной 24,84 и 24,92 м при 25-метровых рельсах и 12,42 и 12,46 м при 12,5-метровых.

По концам каждого рельса имеются отверстия. В рельсах прежних стандартов (1а - 4а) отверстия делались овальной формы. Такая форма не слишком ослабляла шейку по высоте и позволяла рельсу изменять свою длину при изменении температуры.

У современных рельсов, имеющих большие размеры шейки, делают круглые отверстия: они проще в изготовлении и, имея диаметр больше диаметра болта, не затрудняют температурные изменения длины рельсов.

Для рельсов типов Р75 и Р65 ранее выпускались только четырехдырные накладки, а для рельсов типа Р50 - шестидырные. Поэтому на каждом конце рельсов Р75 и Р65 было по два отверстия, а у рельсов Р50 - по три. Однако для уравнительных рельсов, типов Р65 и Р75, укладываемых на бесстыковом пути по концам плетей, приняты усиленные накладки длиной 1000 мм с шестью болтами, поэтому в настоящее время в рельсах Р65 и Р75 просверливается по три отверстия на концах. Это улучшает температурную работу рельсов в стыках и способствует сохранению плавности кривых в плане.

Зная диаметр болтов и болтовых отверстий (см. рис. 2.1), можно подсчитать, чему равен наибольший конструктивный зазор между рельсами в стыках. Для рельсов Р50 он равен 21 мм, а для рельсов Р65 - 23 мм. Фактическую установку зазоров и контроль за их состоянием производят в соответствии с Инструкцией по текущему содержанию железнодорожного пути.

Для того чтобы снизить опасность возникновения трещин у болтового отверстия, на его кромках снимают фаску 1 - 2 мм под углом около 45°.

-----------------------
¹ Пространство между головкой и подошвой, в котором размещается накладка.
² Создана магнитная аппаратура для поточного контроля кривизны рельсов.
³ В закаленных рельсах до 0,77%.

Loading...Loading...