Принцип неопределенности гейзенберга простыми словами. Принцип неопределенности гейзенберга в квантовой механике

По своему принципу рентгеновские методы анализа делятся на рентгеноабсорбционные, рентгеноэмиссионные и рентгенофлуоресцентные. Первые применяют довольно редко, хотя они удобны для определения, например, тяжелых атомов в матрице из легких атомов (свинец в бензине). Вторые весьма широко используют в варианте микроанализа – электронного зонда. Но наибольшее значение в настоящее время имеют, по-видимому, рентгенофлуоресцентные методы.

Рис. 6. Схема аппаратуры для рентгено-флуоресцентного анализа.

Рентгеноэмиссионный микроанализ – важное средство изучения минералов, горных пород, металлов, сплавов и многих других твердых объектов, прежде всего многофазных. Метод позволяет проводить анализ «в точке» (диаметр – до 500 нм и глубина вплоть до 1–2 микронов) или на участке поверхности за счет сканирования. Пределы обнаружения в этом случае обычно невелики, точность анализа оставляет желать лучшего, но как прием качественного и полуколичественного исследования включений и других неоднородностей электронный зонд давно завоевал общее признание. Несколько фирм производили и производят соответствующие приборы, в том числе приборыкомбайны, обеспечивающие анализ и другими методами – ЭСХА,

оже-электронной спектроскопией, масс-спектрометрией вторичных ионов. Аппаратура эта обычно сложная и дорогая.

Рентгенофлуоресцентный метод (РФА) – массовый, повсеместно применяемый, отличающийся важными достоинствами. Это анализ без разрушения; многоэлементность в сочетании с экспрессностью, что обеспечивает высокую производительность; довольно высокая точность; возможность создания небольших и не очень дорогих приборов, в том числе упрощенных анализаторов, например для быстрого определения драгоценных металлов в изделиях. Однако применяют также универсальные и непростые спектрометры, особенно для научно-исследовательских работ. Основная рубрикация рентгенофлуоресцентных приборов, однако, иная: их делят на энергодисперсионные и с дисперсией по длинам волн.

Рентгенофлуоресцентный метод решает задачи определения основных компонентов в геологических объектах, цементах, сплавах, и в последнее время – в объектах окружающей среды. Можно определять почти все элементы, кроме элементов начала периодической системы. Пределы обнаружения не слишком низкие (обычно до 10–3 –10–4 %), но зато погрешность вполне допустима даже при определении основных компонентов.

Частицами вызванная эмиссия рентгеновского излучения – аналитический метод, основанный на флуоресценции под действием рентгеновских лучей. Строго говоря, это не ядерная, а атомная техника. Однако вакансия в электронной оболочке атома, заполнение которой сопровождается рентгеновским излучением, создаётся пучком ионов, ускоренных на ускорителе, да и для регистрации рентгена используются типичный для измерения ионизирующей радиации полупроводниковый Si(Li) –

детектор.

Рис. 7. Рентгеновский спектр дождевой воды.

Аппаратура для этого метода схематически представлена на Рис. 6 . Пучок заряженных частиц, обычно – протонов, разогнанных на ускорителе до энергий 2 – 4 МэВ, бомбардирует тонкий образец, расположенный в вакуумной камере. Протоны соударяются с электронами материала, и выбивают некоторых из них с внутренних оболочек атомов. Сосуд Фарадея собирает заряженные протоны и тем самым измеряет ток пучка. Образец обычно – анализируемый материал, отложенный тонким слоем

на подложке. Характеристические рентгеновские лучи из образца регистрируются Si(Li) детектором. Типичный спектр представлен на Рис. 7. Спектр состоит из дискретных рентгеновских пиков, наложенных на фон рассеяния. Видны линииК а иK b лёгких элементов, возникшие при заполнении вакансий наК оболочке,

и L линии тяжёлых элементов. Пики, соответствующие данному элементу, интегрируют и по площади пика рассчитывают количество элемента или по известному абсолютному сечению ионизации (1 – 104 барн), выходу флюоресценции (0,1 – 0,9), току пучка и геометрии, или путём сравнения с результатами измерений эталона. Термин выход флуоресценции отражает долю заполняемых электронных вакансий при эмиссии рентгена от испущенных Оже-электронов.

Типичные пределы регистрации различных элементов в биологических образцах представлены на Рис. 8 . Для многих элементов чувствительность составляет часть на миллион. Этот метод в основном применяется в биологии и медицине. Использование матрицы из лёгких элементов уменьшает непрерывный фон и удаётся регистрировать многие примесные и токсичные элементы. (Здесь нет «дыр» в пределах детектирования, которые имеют место в активационном анализе, т.к. все элементы какое-нибудь изучение да испускают). Сложности возникают при приготовлении тонких репрезентативных образцов. Заметим, что рассматриваемый здесь метод чувствителен к элементному, а не к изотопному составу.

Самое успешное применение рентгеновского анализа – исследование загрязнения аэрозолей воздуха. Аэрозоли собирают на фильтровальную бумагу, которая представляет собой идеально тонкий образец для анализа. Основное преимущество – возможность анализа большого количества образцов за короткий период времени. Анализ осуществляется за минуту, причём все процедуры могут быть автоматизированы.

Рис. 8. Пределы детектирования в рентгено-флуоресцентном анализе биологических образцов.

Важный вариант – локальный микроанализ. Используя пучок протонов с диаметром 0,5 мм можно определить содержание следовых элементов в небольшой части образца, представляющего интерес для медицины.

3. РЕЗЕРФОРДОВСКОЕ ОБРАТНОЕ РАССЕЯНИЕ

Одним из первых экспериментов в ядерной физике была демонстрация большого углового рассеяния α -частиц от ядер золота. Эти эксперименты доказали существование в атоме маленького ядра. Силы, действующие в этом процессе, названном резерфордовским рассеянием, - кулоновские силы отталкивания положительно заряженных ядер. Схема явления представлена наРис. 9 .

Рис. 9. Схема метода обратного резерфордовского рассеяния.

Спектроскопия резерфордовского обратного рассеяния (спектроскопия рассеяния быстрых ионов, спектроскопия ионного рассеяния) - разновидность спектроскопии ионного рассеяния, основанная на анализе энергетических спектров ионов He + или протонов с энергией ~1-3 МэВ, рассеянных в обратном направлении по отношению к исследуемому образцу.

Ядерно-физический метод исследования твёрдых тел - метод обратного резерфордовского рассеяния - основан на применении физического явления – упругого рассеяния ускоренных частиц на большие углы при их взаимодействии с атомами вещества. Этот

метод используется для определения состава мишеней путем анализа энергетических спектров обратно рассеянных частиц. Аналитические возможности резерфордовского рассеяния лёгких частиц наши применение в различных областях физики и техники, от от электронной промышленности до исследований структурных фазовых переходов в высокотемпературных соединениях.

В спектроскопии резерфордовского обратного рассеяния пучок моноэнергетичных (обычно 1-2 МэВ) коллимированных легких ионов (Н+ , Не+ ) сталкивается с мишенью, после чего частично проникает вглубь образца, а частично отражается. В ходе анализа регистрируют число и энергию частиц, рассеявшихся на уголθ >90° (Рис. 10 ) и тем самым получают информацию о составе и структурных характеристиках исследуемого материала.

Энергия обратно рассеянных частиц:

Е 1 =КЕ 0 , (9)

где Е 0 - начальная энергия частиц пучка, аК - кинематический фактор, определяющий долю энергии, переданной ионом атомам твёрдого тела.

Рис. 10. Схема экспериментальной установки резерфордовского обратного рассеяния. 1- пучок первичных ионов; 2-коллиматоры; 3- исследуемый образец; 4- обратно рассеянный пучок ионов; 5- детектор.

Рассмотрим принципиальные особенности метода обратного резерфордовского рассеяния. Возможная схема применения метода показана на Рис. 11 . Коллимированный пучок ускоренных частиц с массойМ 1 , порядковым номеромZ 1 и энергиейЕ 0 направляется на поверхность объекта исследования. В качестве объекта исследования может быть достаточно тонкая пленка, масса и порядковый номер атомов которой равны, соответственно,М 2 иZ 2 .

Рис. 11 . Схема применения метода обратного резерфордовского рассеяния

Часть ионов в пучке отражается от поверхности с энергией К М 2 Е 0 , а часть проходит вглубь, рассеиваясь затем на атомах мишени. ЗдесьК М 2 - кинематический фактор, определяемый как отношение энергии частицыК М Е после упругого рассеяния частицы на уголθ на атоме мишениМ к её значению до столкновенияЕ . Кинематический фактор - функция угла

рассеяния. Рассеянные частицы, имеющие определенную энергию, выходят из мишени в разных направлениях, в одном из которых под углом θ к направлению первоначального движения регистрируется их число и энергия. Если энергии частиц анализирующего пучка достаточно для того, чтобы достичь задней поверхности мишени, то рассеянные атомами этой поверхности частицы будут иметь энергиюЕ 1 . Общая картина рассеянных от плёнки ионов представляет собой энергетический спектр обратно рассеянных частиц. В случае присутствия на поверхности пленки примеси, масса атомов которой равнаМ 3 , на энергетических спектрах обратного рассеяния появится пик в области энергийК М 3 Е 0 . Пик будет расположен в низкоэнергетической области спектра, если М3 M 2 .

Метод обратного резерфордовского рассеяния предполагает передачу энергии при процессах упругих взаимодействий двух тел, причём энергия налетающей частицы Е 0 должна быть намного больше энергии связи атомов в твердых телах. Поскольку последняя составляет величину порядка 10 – 20 эВ, то это условие всегда выполняется, когда для анализа используются ускоренные ионы с энергией в диапазоне от нескольких сотен кэВ до 2 – 3 МэВ. Верхняя граница энергии анализирующего пучка определяется таким образом, чтобы избежать возможных резонансных ядерных реакций при взаимодействии пучка с атомами мишени и примеси.

Резерфордовское обратное рассеяние является упругим и не приводит к возбуждению ни бомбардирующей частицы, ни ядра мишени. Однако, из-за сохранения энергии и момента взаимодействия, кинетическая энергия обратно рассеянного иона, меньше, чем у начального иона. Соотношение между этими энергиями есть кинетический факторК , задаваемый выражением:

cosθ + M 2

− M 2sin 2

M 1+ M 2

где М 1 иМ 2 – массы атомов снаряда и мишени, соответственно, иθ - угол между падающим и рассеянном пучками ионов.

Относительный сдвиг в энергии при соударениях зависит только от масс ионов и угла детектора. Если измерить угол рассеяния и энергетический сдвиг, можно рассчитать массу (идентифицировать) рассеивающий атом.

Величина К определяет разрешение по массе: чем большеК , тем больше разрешение. Это реализуется для угловθ близких к 1800 и для большихМ 1 (посколькуМ 1 < М 2 ).

Из угловой зависимости кинематического фактора (1) следует, что

1) измеряя угол рассеяния и энергию рассеянных частиц, можно определить массу рассеивающих

2) для достижения хорошей чувствительности метода угол рассеяния должен быть достаточно большим, а масса налетающих частиц не слишком малой.

Поскольку энергетическое разрешение используемых детекторов обычно не менее 20 кэВ, то для наиболее оптимальных условий экспериментов выбирают угол рассеяния порядка 160о , а в качестве анализирующего пучка обычно используют ускоренные ионы гелия.

Наибольшее изменение энергии происходит для θ =180о , где

− M 1

Обычно выбирается геометрия, которая позволяет детектировать рассеяние α -частиц (или протонов) при очень больших углах.

Дифференциальное сечение рассеяния dσ /dΩ для упругих столкновений лабораторной системе

координат, описывающее процесс атомноатомного рассеяния имеет вид:

Z1 Z2 e2

(cosθ + x 2 sin2

θ ) 2

d Ω=

sin4 θ

1− x 2 sin2 θ

где х =М 1 /М 2 , е2 – квадрат заряда электрона, иЕ – энергия бомбардирующей частицы (снаряда). Вероятность рассеяния задаётся как (Z 1 Z 2 )2 и как 1/E 2 . Спектр обратного рассеяния частиц соответствует пику для каждого элемента в образце с относительной высотой (площадью)Z 2 .

Дифференциальное сечение рассеяния сильно уменьшается с увеличением угла рассеяния (~1/Sin4 θ ) и увеличивается с уменьшением энергии пучка (~1/Е 2 ). Оно квадратично растет с увеличением номеровZ 1 иZ 2 сталкивающихся атомов. Для достижения высокого разрешения по массе, необходимо, чтобы налетающая частица рассеивалась на уголθ как можно более близкий к 1800 - требование, которое сильно уменьшает величину регистрируемого сигнала и повышает требования к чувствительности канала регистрации.

F ∫

где N – число атомов мишени,D – число зарегистрированных событий,F поток бомбардирующих ионов. Формула справедлива для очень тонкой плёнки или если рассеивающие частицы отражаются от поверхности толстого образца.

E= KE0 - E=[ ε ] BS Nx

[ε ]

cosθ

cosθ

где ε in иε ou t зависящие от энергии сечения торможения на входном и выходном пути иона.

Рис. 12. Шкала энергетической глубины в обратном резерфордовском рассеянии.

На практике ситуация обычно более сложная, поскольку потеря энергии начальных ионов при проникновении в образец сопровождается непрерывным изменением вероятности рассеяния и энергии рассеянных частиц. Возникшие спектры для рассеяния от

одного элемента на различных глубинах показаны на Рис. 12 , где начальная энергия ионовE 0 , энергия ионов, рассеянных от поверхности,KE 0 , а энергия ионов, рассеянных на глубинеx естьE 1 . В этой ситуации, потеря энергии при пересечении фольги толщинойN x туда и обратно:

Рис. 13. Тандемный ускоритель ионов.

Рис. 14. Резерфордовское обратное рассеяние 2,0 МэВ 4 Не ионов на образце Si(Co). Точки – экспериментальные данные, линия – модельный спектр. Угол рассеянияΘ =170о сθ 1 =θ 2 =5о .

Для экспериментальных исследований используются различные ускорители ионов, например ускорители Ван-де- Графа. В качестве примера наРис. 13 показана установка для исследования обратного рассеяния с использованием тандемного ускорителя ионов.

Резерфордовское обратное рассеяние – важный метод определения состава и строения поверхностей и тонких плёнок. На Рис. 14 показаны результаты применения метода обратного резерфордовского рассеяния ионной4 Не с

энергией 2 МэВ на поверхности кремния, допированного кобальтом, путём диффузии вглубь материала. Легко регистрируется кобальт и его распределение по глубине исследуемого материала.

Выше мы рассмотрели возможности метода обратного резерфордовского рассеяния в элементной избирательности и чувствительности к малым количествам примесных атомов. Речь шла об атомах, локализованных на поверхности мишени. Метод, однако, может быть применён и для измерения характера распределения примеси по объёму образца – концентрационного профиля. Определение пространственного распределения примесей и дефектов основано на регистрации разницы в энергии частиц Е , рассеянных атомами, находящимися на разной глубине. Частица, попадающая в детектор, претерпев акт упругого рассеяния на некоторой глубине x, имеет меньшую энергию, чем частица, рассеянная атомами вблизи поверхности. Это связано как с потерями энергии на пути в мишень и из неё, а, так и с различиями в потерях энергии при упругом взаимодействии частицы с атомами, находящимися на поверхности и на глубинеx .

Таким образом, спектроскопия резерфордовского обратного рассеяния позволяет получать информацию о химическом составе и кристалличности образца как функции расстояния от поверхности образца (глубины), а также о структуре приповерхностного слоя монокристаллического образца.

Рис. 15. Схематическая диаграмма спектра ионов с массой m 1 и первичной энергией E 0 , рассеянных от образца, состоящего из подложки из атомов с массой m 2 и пленки из атомов с массой m 3 толщиной d . Для простоты и пленка, и подложка считаются аморфными, чтобы избежать структурных эффектов.

Химический анализ с разрешением по глубине основан на том, что лёгкий высокоэнергетический ион может проникнуть глубоко внутрь твердого тела и рассеяться обратно от глубоко лежащего атома. Энергия, потерянная ионом в этом процессе, представляет собой сумму двух вкладов. Во-первых, это непрерывные потери энергии при движении иона вперед и назад в объеме твердого тела (т.н. потери на торможение). Скорость потери энергии на торможение (тормозная

способность, dE /dx) табулирована для большинства материалов, что позволяет перейти от шкалы энергий к шкале глубин. Во-вторых, это разовая потеря энергии в акте рассеяния, величина которой определяется

массой рассеивающего атома. В качестве примера на Рис. 15 приведена схема формирования спектра от образца, представляющего собой тонкую пленку на подложке. Пленка толщинойd проявляет себя на спектре в виде плато ширинойE . Правый край плато соответствует ионам, упруго рассеянным от поверхности, левый край – ионам, рассеянным от атомов пленки на границе раздела пленка-подложка. Рассеяние от атомов подложки на границе раздела соответствует правому краю сигнала подложки.

Рассмотрим процесс рассеяния частиц на большой угол на глубине и на поверхности в соответствии с Рис. 16. Пусть на мишень падает частица с энергиейЕ 0 под угломθ 1 . Детектор, расположенный под угломθ 2 , регистрирует частицы, рассеянные на поверхности и на глубине x. Частицы, рассеянные на поверхности, попадают в детектор, имея энергиюК М 2 Е 0 . Частицы же, рассеянные на глубинеx , будут иметь энергиюЕ 1 , которая определяется соотношением:

K M 2 E −

cosθ 2

dx out

где (dE /dx )out - линейные потери энергии частицы при ее движении от точки рассеяния на глубинеx до выхода из мишени,Е - энергия, с которой частица подойдет от поверхности к точке рассеяния на глубинеx :

E = E0

cosθ 1

dx in

где (dE /dx )in - линейные потери энергии частицы при ее движении от поверхности до точки рассеяния на глубинеx . Таким образом:

E = x KM 2

E 1 =E 0 -E ,

1 dE

1 dE

cosθ 1

dx in

cosθ 2

dx out

Рис. 16. Геометриярассеяния частиц от мишени

Выражение в квадратных скобках в (19) обычно называют фактором энергетических потерь и обозначают как

S . Рассматривая для простоты геометрию эксперимента,

когда θ 1 =0, т.е. θ 2 =π -θ , получим следующее выражение для фактора энергетических потерь:

S = K

cosθ

dx in

dx out

и, соответственно,

E = S x.

Последнее соотношение

лежит в основе перевода энергетической шкалы в спектрах обратного рассеяния в шкалу глубины. При этом глубинное разрешение определяется энергетическим разрешением детектора и может составлять величину до

Для определения энергетических потерь частицы (dE /dx ) используют квантовую теорию торможения. Формула торможения для быстрых нерелятивистских частиц с массой, значительно большей электронной массы, имеет вид:

4 π e4 Z2 Z N

2 mv2

− dx

где v - скорость частицы,N - концентрация атомов мишени,e, m - заряд и масса электрона,I - средний ионизационный потенциал. Средний ионизационный потенциал, входящий в формулу (21), - подгоночный параметр, определяемый из экспериментов по торможению заряженных частиц. Для оценки среднего ионизационного потенциала используют формулу Блоха:

I= ε Ry Z2

где ε Ry =13,6 эВ - постоянная Ридберга.

A i = q Ωσ i (Nx ) i ,

Рис. 17 . Энергетический спектр ионов гелия с энергией 2 МэВ обратно рассеянных от кремниевой мишени

На Рис. 17 приведен пример энергетического спектра обратного рассеянных ионов. Стрелками отмечены положения пиков тех элементов, которые содержатся на поверхности исследуемого образца. Обнаружение той или иной примеси связано не только с энергетическим разрешением детектора, но и с количеством этой примеси в мишени, т. е. с величиной сигнала от данной примеси на энергетическом спектре. Величина сигнала от i -го элемента примеси в мишени, или площадь под пикомА i , определяется выражением:

где (Nx )i - слоевое содержание i -го элемента (1/см2 ),σ i - среднее дифференциальное сечение рассеяния анализирующих частиц на атомах в детектор с телесным угломΩ (см2 /ср),q - полное число анализирующих частиц, попавших в мишень за время измерения спектра. Из соотношения (23) следует, что стандартных условиях эксперимента (т.е. при постоянныхΩ иq ) величина сигнала пропорциональнаσ i . Для вычисления среднего дифференциального сечения можно воспользоваться формулой:

cosθ +

1−

sin2 θ

Mi 2

Z1 Zi e

σ i=

2E sin

1−

sin2

Mi 2

Из последней формулы следует, что величина сигнала в спектрах обратного рассеяния зависит от порядкового номера элемента как Z i 2 .

Рис. 18 . Схема процесса рассеяния.

Таким образом, обратно рассеянные частицы с энергией ниже той, что соответствует рассеянию с поверхности моноатомной мишени, несут информацию о глубине, на которой произошло рассеяние. Действительно, до столкновения, которое произошло на глубине х от поверхности мишени, первичная частица должна пройти расстояниех в твёрдом теле, теряя энергию как на пути вперед, так и после столкновения при выходе мишени в направлении детектора. НаРис. 18 представлены обозначения, используемые для вычисления разницы

между энергией налетающей частицы, которая рассеялась на поверхностном атоме на угол θ ,kE 0 и энергиейЕ 1 (х ) частицы, достигшей детектора после столкновения на глубинех от поверхности мишени:

1 dE

− E 1

(x )=

cosθ 1

dx in

cosθ 2

dx out

В качестве величины dE /dx в (25) берут среднее значение энергии частицы на пути до и после столкновения. Формула (25) преобразует шкалу энергий регистрируемых частиц в шкалу глубин; максимальное значение энергии соответствует рассеянию с поверхности мишени (Е 1 (0) =kE 0 , минимальная энергия соответствует наибольшей глубине рассеяния.Рис. 19 схематически иллюстрирует спектр пучка легких ионов (Не) обратно рассеянных с мишениС , в которую имплантирован As.

Рис. 19 . Типичный спектр обратного резерфордовского рассеяния гелия для углерода с поверхностно легированным и имплантированным мышьяком

Необходимо отметить следующее:

1. Конечность спектра подложки и её шкалы глубин;

2. Положение и ширину пика от имплантированного As, который смещен вниз по энергии и уширен в сравнении с положением и шириной пика от тонкого слоя As на поверхности С подложки (пунктирная кривая);

3. Высоту пика от имплантированного As (h ) по отношению к высоте спектраС вблизи поверхности (Н ).

Первое объясняется следствием энергетической зависимости сечения резерфордовского рассеяния, связанной с потерями энергии налетающих частиц в мишени. Второе отражает тот факт, что вследствие большей массы атомов имплантированного As, обратно рассеянные на As ионы будут иметь бoльшую энергию, чем ионы, рассеянные на атомах С , поэтому профиль As примеси может быть измерен независимо от наличия атомовС в объеме. Энергия, при которой появляется пик от примеси по отношению к энергии, которая наблюдалась, если бы эта примесь была на поверхности (25) даёт информацию о глубине имплантированной примеси, а ширина пика с поправкой на разрешение детектора обеспечивает информацию о диффузии и распределении имплантированной примеси. Третье иллюстрирует тот факт, что спектр обратного рассеяния дает плотность числа конкретного вида атомов на глубинех исходя из измерений

где Q - общее число частиц, попадающих в мишень,N - объемная плотность атомов мишени,σ (Ω ) - среднее дифференциальное сечение рассеяния,Ω - телесный угол, регистрируемый детектором. Отношение высотыh пика от As к высотеН спектра атомов мишениС отражает отношение между числом атомов As и С в мишени с поправкой на различное сечение рассеяния для двух элементов и на различие энергий частиц до столкновения в соответствии с глубиной имплантированного As.

Для исследования структуры монокристаллических образцов с помощью спектроскопии резерфордовского обратного рассеяния используется эффект каналирования . Эффект заключается в том, что при ориентации пучка ионов вдоль основных направлений симметрии монокристаллов те ионы, которые избежали прямого столкновения с атомами поверхности, могут проникать глубоко в кристалл на глубину до сотен нм, двигаясь по каналам, образованным рядами атомов. Сравнивая спектры, полученные при ориентации пучка ионов вдоль направлений каналирования и вдоль направлений, отличных от них, можно получить информацию о кристаллическом совершенстве исследуемого образца. Из анализа величины поверхностного пика, являющегося следствием прямого столкновения ионов с атомами поверхности, можно получить информацию о структуре поверхности, например, о наличии на ней реконструкций, релаксаций и адсорбатов.

Если направление распространения пучка ионов устанавливается почти параллельно плотно упакованным цепочкам атомов, ионы пучка будут направляться потенциальным полем цепочки атомов в кристалле, результатом этого будет волнообразное движение частиц, при котором каналированные ионы не могут близко подойти к атомам в цепочках. Поэтому вероятность обратного рассеяния ионов резко уменьшается (примерно на два порядка). Повышается и чувствительность рассеяния к незначительному содержанию примеси на поверхности. Очень важно, что происходит полное взаимодействие пучка с первыми монослоями твердого тела. Это “поверхностное взаимодействие” приводит к улучшению разрешения по глубине. На Рис. 20 представлены спектры обратного рассеяния для случаев, когда пучок ионов параллелен главной кристаллографической оси и когда пучок ионов имеет “случайное” (не параллельное кристаллографической оси) направление.

Даже когда “случайный” и “каналированный” спектры получены для идентичных ионных пучков (с одинаковым числом падающих частиц), число событий обратного рассеяния, регистрируемых детектором значительно меньше для “каналированного” спектра за счёт эффекта каналирования. Такое уменьшение выхода обратного рассеяния отражает степень совершенства кристаллической структуры мишени, для чего вводят величину “нормированный минимальный выход” χ min , который определяется как отношение числа обратно рассеянных частиц в узком энергетическом “окне” (вблизи поверхности кристалла) “каналированного” и “случайного” спектров (Рис. 20а ,c min =Н а /Н ). Для случая наибольшего сближения ионов пучка с цепочкой атомовr , концентрации атомовN и периода расположения атомов вдоль цепочки, преимущественно определяется тепловыми колебаниями атомов в кристалле.

В экспериментах по каналированию кристаллический образец закрепляется в гониометрическом устройстве, и регистрируется число близких столкновений (как например, обратное рассеяние из приповерхностной области) как функция угла наклона ψ пучка к кристаллографической оси для фиксированного числа падающих частиц. Кривая, полученная в результате углового сканирования, показана наРис. 20б . Кривая симметрична относительно минимума выхода и имеет ширину, определяемую как полуширина на половине высоты кривой. Приблизительная оценка критического значения углаψ с , больше которого пучок будет пробивать ряд атомов, может быть легко получена приравниванием поперечной энергии падающей частицыЕ 0 ψ с и поперечной энергией U(ρ ) в точке поворота:

ψ с = 1/2

Метод каналированного обратного рассеяния используется для исследования разориентированных кристаллических решеток путем измерения доли атомов, для которых каналы закрыты. Когда падающий пучок направлен вдоль направления каналирования совершенного кристалла, значительное уменьшение выхода обратного рассеяния наблюдается вследствие того, что каналированные ионы, направляемые атомными цепочками, не приближаются к атомам достаточно близко, чтобы испытать столкновение. Однако, если часть кристалла разориентирована и атомы решетки смещены так, что закрывают часть каналов, ионы, направленные вдоль номинального направления каналирования, испытывают близкие столкновения со смещенными атомами, в результате чего выход обратного рассеяния увеличивается по сравнению с ненарушенными каналами. Так как смещённые атомы имеют ту же массу, что и атомы решетки, увеличение выхода обратного рассеяния происходит при энергии, соответствующей глубине, на которой расположен смещенный атом. Увеличение выхода обратного рассеяния с данной глубины, зависит от числа смещенных атомов, а зависимость выхода от глубины (энергия обратного рассеяния Е 1 ) отражает распределение смещенных атомов по глубине.

В то время как ионы высоких энергий могут проникать в твердое тело на глубину порядка нескольких микрон, ионы средних энергий (порядка сотен килоэлектронвольт) рассеиваются почти полностью в приповерхностном слое и широко используются для исследования первых монослоев. Налетающие на мишень ионы средних энергий рассеиваются на атомах поверхности посредством бинарных столкновений и регистрируются электростатическим энерго-анализатором. Такой анализатор регистрирует только заряженные частицы, а в диапазоне энергий ~1 кэВ частицы, проникающие глубже первого монослоя, выходят наружу почти всегда в виде нейтральных атомов. Поэтому чувствительность эксперимента только к заряженным частицам повышает поверхностную чувствительность метода рассеяния ионов низких энергий. Главными причинами высокой поверхностной чувствительности этого метода является зарядовая избирательность электростатического анализатора и очень большие значения сечений рассеяния. Разрешение по массе определяется энергетическим разрешением электростатического энергоанализатора.

Однако форма спектра отличается от той, которая характерна для высоких энергий. Теперь спектр состоит из серии пиков, соответствующих атомным массам элементов поверхностного слоя. Количественный

анализ в этом диапазоне сложен по двум причинам: 1) вследствие неопределенности сечений рассеяния и 2) из-за отсутствия достоверных данных о вероятности нейтрализации ионов, рассеянных на поверхности. Влияние второго фактора можно свести к минимуму, используя пучки с малой вероятностью нейтрализации

и применяя методы детектирования, не чувствительные к зарядовому состоянию рассеянного иона.

В заключение, упомянем ещё одно любопытное применение метода обратного резерфордовского рассеяния – определение элементного состава лунной и марсианской поверхностей. В миссии США 1967-68

источник 242 Cm испускал α -частицы, рассеяние которых впервые обнаружило в лунном грунте повышенное содержание титана, что в последствии было подтверждено лабораторным анализом лунных минералов. Эта же методика использовалась при изучении марсианских горных пород и почвы.

В квантовой механике состояние частицы определяется заданием значений координат, импульса, энергии и других подобных величин, которые называются динамическими переменными .

Строго говоря, микрообъекту не могут быть приписаны динамические переменные. Однако информацию о микрообъекте мы получаем в результате их взаимодействия с макроприборами. Поэтому необходимо результаты измерений выражаются в динамических переменных. Поэтому, например, говорят о состоянии электрона с определенной энергией.

Своеобразие свойств микрообъектов заключается в том, что не для всех переменных получаются при изменениях определенные значения. Так в мысленном эксперименте мы видели, что при попытке уменьшить неопределенность координаты электронов в пучке путем уменьшения ширины щели приводит к появлению у них неопределенной составляющей импульса в направлении соответствующей координаты. Между неопределенностями координаты и импульса имеет место соотношение

(33.4)

Аналогичное соотношение имеет место для других осей координат и соответствующих проекций импульса, а также для ряда других пар величин. В квантовой механике такие пары величин называются канонически сопряженными . Обозначив канонически сопряженными величины А и В , можно записать:

(33.5)

Соотношение (33.5) было установлено в 1927 году Гейзенбергом и называется соотношением неопределенности .

Само утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше принципом неопределенности Гейзенберга . Принцип неопределенности Гейзенберга является одним из фундаментальных положений квантовой механики.

Важно отметить, что канонически сопряженными являются энергия и время, и справедливо соотношение:

(33.6) в частности, означает, что для измерения энергии с погрешностью не более (порядка) необходимо затратить время не менее . С другой стороны, если известно, что в некотором состоянии частица не может находиться более , то можно утверждать что энергия частицы в этом состоянии не может быть определена с погрешностью менее



Соотношение неопределенностей определяет возможность использования классических понятий для описания микрообъектов. Очевидно, что чем больше масса частицы, тем меньше произведение неопределенностей ее координаты и скорости . Для частиц с размерами порядка микрометра неопределенности координаты и скорости становятся столь малы, что оказываются за пределами точности измерений, и движение таких частиц можно рассматривать происходящим по определенной траектории.

При определённых условиях даже движение микрочастицы может рассматриваться, как происходящее по траектории. Например, движение электрона в ЭЛТ.

Соотношение неопределенностей, в частности, позволяет объяснить, почему электрон в атоме не падает на ядро. При падении электрона на ядро его координаты и импульс приняли бы одновременно определенные, а именно нулевые значения, что запрещено принципом неопределенности. Важно отметить, что принцип неопределенности – это базовое положение, которое определяет невозможность падения электрона на ядро наряду с рядом других следствий без принятия дополнительных постулатов.

Оценим на основе соотношения неопределенностей минимальные размеры атома водорода. Формально, с классической точки зрения, энергия должна быть минимальна при падении электрона на ядро, т.е. при и . Поэтому для оценки минимальной размеров атома водорода можно считать что, что его координата и импульс совпадают с неопределенностями этих величин: . Тогда они должны быть связаны соотношением:

Энергия электрона в атоме водорода выражается формулой:

(33.8)

Выразим импульс из (33.7) и подставим в (33.8):

. (33.9)

Найдем радиус орбиты , при котором энергия минимальна. Дифференцируя (33.9) и приравнивая производную нулю, получаем:

. (33.10)

Поэтому радиус расстояние от ядра, на котором электрон имеет минимальную энергию в атоме водорода, можно оценить по соотношению

Это значение совпадает с радиусом воровской орбиты.

Подставив найденное расстояние в формулу (33.9), получим выражение для минимальной энергии электрона в атоме водорода:

Это выражение также совпадает с энергией электрона на орбите минимального радиуса в теории Бора.

Уравнение Шрёдингера

Поскольку, по идее Де-Бройля, движение микрочастицы связано с некоторым волновым процессом, Шрёдингер сопоставил ее движению комплексную функцию координат и времени, которую он назвал волновой функцией и обозначил . Часто это функцию так и называют – «пси-функция». В 1926 году Шрёдингер сформулировал уравнение, которому должна удовлетворять :

. (33.13)

В этом уравнении:

m – масса частицы;

;

– функция координат и времени, градиент, который с обратным знаком определяет силу, действующую на частицу.

Уравнение (33.13) называется уравнением Шрёдингера . Отметим, что уравнение Шрёдингера не выводится из каких-либо дополнительных соображений. Фактически оно является постулатом квантовой механики, сформулированным на основе аналогии уравнений оптики и аналитической механики. Фактическим обоснованием уравнения (33.13) Является соответствие результатов, полученных на его основе экспериментальным фактам.

Решая (33.13), получают вид волновой функции, описывающей рассматриваемую физическую систему, например, состояния электронов в атомах. Конкретный вид - функции определяется характером силового поля, в котором находится частица, т.е. функцией .

Если силовое поле стационарно , то не зависит явно от времени и имеет смысл потенциальной энергии . В этом случае решение уравнения Шрёдингера распадается на два множителя, один из которых зависит только от координат, другой – только от времени:

где – полная энергия системы, которая в случае стационарного поля остаётся постоянной.

Подставив (33.14) в (33.13), получим:

После сокращения на ненулевой множитель получаем уравнение Шредингера, справедливое в указанных ограничениях:

. (33.15)

Уравнение (33.15) называется уравнением Шрёдингера для стационарных состояний , которое обычно записывают в виде.

Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят - квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений. Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений. Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.


Квантовая механика для "чайников"

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с . Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные "сходились".


Кстати! Для наших читателей сейчас действует скидка 10% на

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Где h - постоянная Планка, ню - частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.


При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще - все вокруг спокойно и понятно. Хочешь узнать положение тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга .

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь x - расстояние или координата частицы, m - масса частицы, E и U - соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!


Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы . Математически это записывается так:

Здесь дельта x - погрешность определения координаты, дельта v - погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика.
- Сэр, Вы знаете, с какой скоростью двигались?
- Нет, зато я точно знаю, где я нахожусь


И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к – профессионалам, которые были взращены с квантовой механикой на устах!

Принцип неопределенности лежит в плоскости квантовой механики, однако чтобы полноценно разобрать его, обратимся к развитию физики в целом. и Альберт Эйнштейн, пожалуй, в истории человечества. Первый еще в конце XVII века сформулировал законы классической механики, которой подчиняются все тела, окружающие нас, планеты, подвластные инерции и гравитации. Развитие законов классической механики привело научный мир к концу XIX века к мнению о том, что все основные законы природы уже открыты, и человек может объяснить любое явление во Вселенной.

Теория относительности Эйнштейна

Как оказалось, на тот момент была обнаружена лишь верхушка айсберга, дальнейшие изыскания подбросили ученым новые, совершенно невероятные факты. Так, в начале XX века было обнаружено, что распространение света (который имеет конечную скорость в 300 000 км/с) никак не подчиняется законам ньютоновской механики. Согласно формулам Исаака Ньютона, в случае если тело или волна испускается движущимся источником, его скорость будет равна сумме скорости источника и собственной. Однако волновые свойства частиц имели иную природу. Многочисленные опыты с ними продемонстрировали, что в электродинамике, молодой на тот момент науке, работает совершенно другой набор правил. Еще тогда Альберт Эйнштейн совместно с немецким физиком-теоретиком Максом Планком ввели свою знаменитую теорию относительности, описывающую поведение фотонов. Однако для нас сейчас важна не столько ее суть, сколько тот факт, что в этот момент была выявлена принципиальная несовместимость двух областей физики, совместить

которые, кстати, ученые пытаются и по сей день.

Рождение квантовой механики

Окончательно разрушило миф о всеобъемлющей классической механике изучение строения атомов. Опыты в 1911 году продемонстрировали, что атом имеет в своем составе еще более мелкие частицы (названные протонами, нейтронами и электронами). Более того, они также отказывались взаимодействовать по Изучение этих мельчайших частиц и породило новые для ученого мира постулаты квантовой механики. Таким образом, возможно, конечное понимание Вселенной лежит не только и не столько в изучении звезд, а в изучении мельчайших частиц, которые дают интереснейшую картину мира на микроуровне.

Принцип неопределенности Гейзенберга

В 1920-е годы делала свои первые шаги, а ученые лишь

осознавали, что же из нее вытекает для нас. В 1927 году немецкий физик Вернер Гейзенберг сформулировал свой знаменитый принцип неопределенности, демонстрирующий одно из главных отличий микромира от привычного нам окружения. Состоит он в том, что невозможно измерить одновременно скорость и пространственное положение квантового объекта уже потому, что при измерении мы оказываем на него воздействие, ведь и само измерение тоже осуществляется с помощью квантов. Если совсем банально: оценивая объект в макромире, мы видим отраженный от него свет и на основании этого делаем выводы о нем. Но в уже воздействие световых фотонов (или других производных измерения) оказывает влияние на объект. Таким образом, принцип неопределенности вызвал понятные сложности в изучении и предсказании поведения квантовых частиц. При этом, что интересно, можно измерять отдельно скорость или отдельно положение тела. Но если мы будем измерять одновременно, то чем выше будут наши данные о скорости, тем меньше мы будем знать о действительном положении, и наоборот.

В наших предыдущих псевдолекциях мы как могли растолковали простому люду про чёртов , о том, что вся материя вокруг нас на самом деле имеет волновые свойства, даже кирпич или бутылка водки, и что лишает его вездесущности.
Сегодня мы, наконец, продолжим издеваться над обывателями и расскажем в предельно доступной форме про неопределенность, правящую миром, вызвав у тех, кто профессионально разбирается в предмете тонны ненависти и раздражения. Случайные картинки из гугла прилагаются, хотя в силу усложнения текста эти картинки стало труднее выискивать. Тем, кто не в теме, рекомендуем почитать наши предыдущие посты, потому что сейчас действительно будет сложно для понимания нахрапом. Мотивирующую картинку прилагаем.

Итак, понимание того безумия, которое творится в квантовой физике, было бы очень неполным без одного открытия, который сделал в 1927 молодой немецкий физик Вернер Гейзенберг. Кстати на тот моемент ему было 26 лет, подумайте об этом. Впрочем, его гениальность не помогла отвертеться от участия в немецком ядерном проекте во время второй мировой, и что характерно теория относительности и квантовая физика считались тогда еврейскими лженауками - в общем, бытовые проблемы человечества снова и снова мешали и будут мешать ученым разгадывать тайны мироздания.

Примерно в 20-е и 30-е годы прошлого века в научных кругах шла эпическая битва за правильное понимание законов квантового мира. Проклятых либералов возглавлял Нильс Бор, а консерваторов - лично дедушка Альберт, который, напомню, до конца жизни не верил в квантовую физику. Одним из камней преткновения оказалось вычисление местоположения электрона в атоме и его скорости в определенный момент времени. По странным и непонятным причинам ученые никак не могли вывести формулу для расчета обоих значений одновременно. Эйнштейн говорил, что все эти теоретики неучи и двоечники, потому что чего-то упускают, и бог, знаете ли, не играет со Вселенной в азартные игры. Нильс Бор попивал пивко и утверждал, что классическая физика вообще не применяется для таких случаев как движение электронов. И тут вундеркинд Гейзенберг заявил: все нормально, мужики, так и должно быть.

Давайте вместе ужаснемся открытию на примере. Если пнуть ногой мяч с точно рассчитанной силой, то удивительная и не всем доступная наука физика, в частности классическая механика, легко ответит нам на вопрос, где будет находиться мяч через пять секунд после пинка и какова его скорость. Это же элементарно: расстояние равно время умножить на скорость. Садись, Вовочка, пять по физике!
Теперь мы пнём электроном. По специальным (но все же классическим) формулам считаем его скорость и местоположение на пятой секунде полета и проверяем экспериментом. И получается что-то невероятное. Мы поймали частицу в двух метрах от начала полета, но полученная по результатам эксперимента скорость вообще не такая, да еще и каждый раз разная. И наоборот, чем точнее мы рассчитываем скорость (а вернее импульс, который равен массе, умноженной на скорость), тем хуже себе представляем, где находится частица.

Давайте раз и навсегда разберемся с импульсом, а то эта вещь хоть и из школьной физики, но сильно затрудняет понимание. Импульс это такая характеристика движущегося тела, равная массе этого тела, умноженную на его скорость. Его еще называют количеством движения и измеряют в килограммах на метр в секунду. Чем больше масса движущегося тела, тем больше его импульс. В принципе, косвенно импульс намекает, как больно нам прилетит в лоб брошеный булыжник, и степень этой боли будет зависеть как от массы булыжника, так и от его скорости к моменту прилета в нашу башку. Импульс имеет важное свойство - они никуда не пропадает при столкновении, а передается другому телу, тем самым создавая всемирный закон сохранения импульса.

Не в меру умный Гейзенберг объяснил монстрам классической физики, что это не "фигня какая-то", а фундаментальное свойство нашего мира.
И нарисовал им поясняющую формулу: Δx * Δv > h/m , которая означает, что если мы умножим неопределенность положения частицы (длина отрезка координаты, где кажется находится частица) на неопределенность ее скорости (разница между верхней и нижней предполагаемой скоростей этой частицы), то всегда получим число большее нуля, равное массе частицы, поделенной на постоянную Планка (это такая цифра, у которой ноль целых, тридцать три нуля после запятой, а потом уже цифра 6 и другие). Проверьте сами: если мы точно знаем, где находится частица, то есть Δx=0, то тогда ее скорость равна невозможному значению, математической бесконечности, потому что для ее расчета нам придется поделить число из правой части формулы на ноль. А на ноль делить нельзя…

Можете себе представить, как тряхануло весь ученый мир - остальной народ ничего не понял, так как готовился ко Второй Мировой, занимался коллективизацией, пытался вылезти из Великой Депрессии и т.д. и т.п.
Оказалось, что природа защитила свои секреты вот таким вот законом, который никому никогда не обойти. Мы можем узнать вероятные значения параметров частицы с заданной точностью, но никогда не предскажем точно оба параметра. Кроме того принцип Гейзенберга распространяется не только на импульс и местонахождение - он также справедлив для энергии частицы и момента времени, когда частица этой энергией обладает.
Вот формула для самых любознательных читателей: ΔЕ*Δt > h

Цитируя одного замечательного автора: "если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится. На практике, конечно, физикам-экспериментаторам всегда приходится искать какой-то компромисс между двумя этими крайностями и подбирать методы измерения, позволяющие с разумной погрешностью судить и о скорости, и о пространственном положении частиц ".

Опять же, читатель, лениво прочитавший все вышенаписанное, скажет, мол, товарищи, это все математика и абстракции, мы живем в мире, где поезд выходит из города А в город Б со скоростью, которую нужно рассчитать согласно условиям учебника. Где факты, подтверждающие формулы всех этих немцев и евреев?

Во-первых, мы действительно не можем наблюдать непосредственно этот эффект, потому что различия становятся заметны на очень малых расстояниях (на это нам намекает постоянная Планка в формуле с ее тридцатью тремя нулями после запятой). А во-вторых, принцип неопределенности не так и чужд нашей Вселенной, а очень многое объясняет, почему вещи устроены так как сейчас, а не иначе.
Например, становится ясно, почему существует твердая материя.

Не могу не процитировать еще одного хорошего автора: "что случится с электроном, если его начнут слишком сильно прижимать к ядру. Это будет означать, что его местоположение станет известным с большой степенью точности. Но, согласно принципу неопределенности Гейзенберга, чем больше мы уверены в местоположении частицы, тем меньше мы уверены в ее импульсе. Это очень похоже на то, как если бы мы засунули пчелу в спичечный коробок. Встряхните коробок — пчела разозлится и будет с остервенением колотиться о стены своей тюрьмы. Вот электроны в атомах и есть те самые пчелы в коробках. <…> Когда мы ступаем по земле, наш вес сжимает атомы, из которых она состоит. Это сжатие заставляет электроны хоть чуть-чуть, но приблизиться к ядрам. А принцип неопределенности Гейзенберга понуждает их воспротивиться и оттолкнуться от ядер ".

Еще один пример действия квантовой неопределенности мы уже встречали в нашей . Теперь стало немного понятнее, почему вакуум не может существовать с точки зрения квантовой физики: вакуум это поле с нулевой энергией и нулевым количеством частиц. А этого одновременно быть не может, поэтому природе приходится создавать квантовую пену, лишь бы обойти дурацкий запрет на точное знание всех параметров частиц.

Тем не менее, многие люди, включая даже настоящих ученых, полагают, что неопределенность измерения можно объяснить классическими средствами. Ведь что получается, говорят эти люди, если мы пытаемся измерить местоположение частицы, то для этого мы должны как-то обнаружить ее в пространстве и для этого мы ставим для нее преграду или ловим потоком других частиц (фотонами, например). Если в макромире освещение фонариком предмета не приведет к изменению параметров предмета, то в микромире ситуация другая. Длина волны фотона сопоставима с длиной волны разыскиваемой частицы и их "столкновение" фатально для системы.

Если фотон имеет очень большую длину волны, мы не можем точно определить положение частицы. Фотоны с большой длиной волны ударяют слабо, поэтому измерение не слишком влияет на электрон, а значит, мы можем определить его скорость достаточно точно. С другой стороны, чтобы как следует понять, где находится частица, нужно ударить ее фотоном с маленькой длиной волны. Фотон с маленькой длиной волны очень энергичный, а значит, сильно ударяет частицу. В результате мы не можем определить ее скорость достаточно точно. (тоже цитата)

На картинке как раз примеры длин электромагнитных волн - ну и какой именно волной ловить частичку, когда в случае красного света она просто потеряется между началом и концом одного "гребня", а в случае с ультрафиолетом - столкнется с практически твердой преградой и отскочит к черту на кулички.

Действительно, кажется, что проблема неопределенности в ограничениях, связанных с измерением - мы не можем измерить технически, а не вообще. Но на самом деле свойство неопределенности фундаментально и не зависит от времени, места, способа измерения параметров частицы. Неопределенность есть даже тогда, когда мы ее не измеряем (но это не значит, что существует некий Вселенский Измеритель наподобие Бога, Аллаха, Летающего Макаронного Монстра, Невидимого Розового Единорога или Ктулху, которые сидят с линейкой и решают, что измерить в каждый момент времени - координаты или импульс).

Интереснейшим практическим следствием неопределенности является туннельный эффект.
Если по каким-то причинам местонахождение частицы становится все более и более определенным, то скорость частицы становится, как мы знаем, непредсказуемой. Строго говоря, непредсказуемым становится импульс частицы. Вследствие этого обычного квантового явления неопределенность импульса может дать частице дополнительную энергию и такая частица иногда может сделать очень странную вещь: пройти сквозь непреодолимый барьер. В макромире это выглядело бы как прохождение сквозь стену или выпрыгивание из ямы без видимых причин.

Но туннелирование в самом деле существует. И мы им пользуемся в таких достижениях прогресса как туннельный диод или сверхпроводники. Тот же радиоактивный распад существует благодаря эффекту туннелирования: альфа-частицы отрываются от тяжелого ядра не за счет собственных сил - ядро их на самом деле очень крепко держит (мы как-то уже рассказывали ) - а как раз из-за существования ненулевой вероятности прорваться через энергетический барьер. И существование термоядерного синтеза внутри звезд (из-за которого наше солнце светит) также обусловлено туннелированием. Вот ведь как все на самом деле-то, котаны.


Как мы уже говорили, Эйнштейну очень не нравились всякие неопределенности в физике. И в то время, когда Нильс Бор пытался создать хоть какое-то подобие квантовой теории, Эйнштейн всячески изводил его провокационными вопросами. Так в 30-е годы Эйнштейн и два его единомышленника - Подольский и Розен - предложили так называемый ЭПР-парадокс (по первым буквам фамилий хитрых физиков), гипотетический эксперимент, который доказывал, что неопределенность Гейзенберга можно обойти. Те, кто немного разбирались в том, что происходит, запасались попкорном и издалека наблюдали как физики троллят друг друга. Заголовок газеты тех времен гласил: "Эйнштейн атакует квантовую теорию: Учёный и двое его коллег находят её „неполной“, хотя и „корректной“

Попробуем упрощенно разобрать суть парадокса. Допустим Гейзенберг немного прав, и мы почему-то не можем измерить импульс и координаты частицы одновременно. Но попробуем пойти в обход. Давайте столкнем две частицы, и после удара они разлетятся, получив некоторые общие характеристики. Такие частицы физики называют "запутанными ". Отбросив сложную матчасть, вспомним закон сохранения импульса из классической механики - суммарный импульс тел до соударения равен суммарному импульсу после соударения . Итак, частицы сталкиваются, и они разлетаются, поделив импульс, как биллиардные шары после столкновения. Затем мы измеряем координату у первой частицы и импульс у второй. Таким образом узнаем и координату первой частицы (которую измерили непосредственно), и ее импульс (который просто вычислили, измерив импульс у второй частицы и отняв ее от первоначального импульса до соударения).

Осознайте, насколько коварен был Эйнштейн! Поставить подобный эксперимент в те годы было затруднительно (коллайдеры еще не изобрели). Нильс Бор практически на одной вере в чудеса заявил, что эксперимент не получится, потому что частица приобретает значения импульса только после измерения, а не в момент столкновения. Но Эйнштейн казался таким логичным - ведь это будет святотатство - нарушение закона сохранения импульса. Противостояние физиков перешло в затяжную стадию с перевесом в пользу Эйнштейна.

И только спустя 30 лет, один физик по имени Белл придумал специальную формулу, с помощью которой можно было бы проверить, кто прав Эйнштейн или Бор. А еще 22 года спустя (в 1982 году) французские ученые сумели поставить эксперимент и проверили результаты по формулам Белла. Оказалось, что прав был Нильс Бор: Никакой "объективной физической реальности", о которой грезил Эйнштейн, в микромире не существует.

На картинке еще одно более сложное, но все-таки популярное объяснение ЭПР-парадокса (разбирайтесь сами).

Квантовая запутанность крайне сложная вещь - о ней и прочих страшных вещах (квантовая нелокальность, квантовые компьютеры, все эти необъяснимые спины, запрет Паули, неравества Белла и т.д.) мы как-нибудь попробуем рассказать в следующих ликбезах от дружного коллектива Quantuz, если, конечно, рейтинги статей дадут нам понять, что народу эта тема все еще интересна. Искренне просим прощения за возможные неточности в изложении. Напоминаем, что наша цель как можно более популярно объяснить людям, почему физика интереснее "битвы экстрасенсов".
Помните, что если вы что-то не поняли, то это нормально. Квантовую физику мало кто понимает целиком. Не унывайте.

Все изображения взяты из гугла (поиск по картинкам) - авторство определяется там же.
Незаконное копирование текста преследуется, пресекается, ну, и сами знаете.
..

Loading...Loading...