Поддаются ли излечению наследственные болезни. Генетические болезни. Неинвазивные анализы у генетика при планировании беременности и во время нее

Каждый ген человеческого организма несёт в себе уникальную информацию , содержащуюся в ДНК. Генотип конкретной особи обеспечивает как её уникальные внешние признаки, так и во многом обуславливает состояние её здоровья.

Интерес медицины к генетике неуклонно растёт со второй половины XX века. Развитие этой области науки открывает новые методы исследования болезней, в том числе редких, которые признавались неизлечимыми. На сегодняшний день обнаружено несколько тысяч заболеваний, которые полностью зависят от генотипа человека. Рассмотрим причины возникновения этих заболеваний, их специфику, какие методы их диагностики и лечения применяет современная медицина.

Типы генетических заболеваний

Генетическими заболеваниями принято считать передающиеся по наследству болезни, которые обусловлены мутациями в генах. Важно понимать, что врожденные пороки, появившиеся как результат внутриутробных инфекций, приёма беременной запрещенных препаратов и прочих внешних факторов, которые могли повлиять на беременность – не имеют отношения к генетическим заболеваниям.

Генетические заболевания человека подразделяют на следующие виды:

Хромосомные аберрации (перестройки)

К этой группе относят патологии, связанные с изменениями структурного состава хромосом. Вызваны данные изменения разрывом хромосом, который приводит к перераспределению, удвоению или утрате генетического материала в них. Именно этот материал должен обеспечивать хранение, воспроизводство и передачу наследственной информации.

Хромосомные перестройки ведут к возникновению генетического дисбаланса, что негативно сказывается на нормальном течении развития организма. Проявляются абберации в хромосомных болезнях: cиндром кошачьего крика, синдром Дауна, синдром Эдвардса, полисомиях по Х-хромосоме или Y-хромосоме и т.д.

Самой распространенной хромосомной аномалией в мире синдром Дауна. Обусловлена эта патология наличием одной лишней хромосомы в генотипе человека, то есть у больного наблюдается 47 хромосом вместо 46. У людей с синдромом Дауна 21-ая пара (всего их 23) хромосом тремя копиями, а не положенными двумя. Существуют редкие случаи, когда данное генетическое заболевание - результат транслокации хромосомы 21-ой пары или мозаицизма. В абсолютном большинстве случаев синдром не является наследственным нарушением (91 из 100).

Моногенные болезни

Данная группа достаточно разнородна по клиническим проявлениям заболеваний, но каждое генетическое заболевание здесь обусловлено повреждениями ДНК на уровне гена. На сегодняшний день открыто и описано свыше 4000 моногенных болезней. К ним относятся и заболевания с умственной отсталостью, и наследственные болезни обмена веществ, изолированные формы микроцефалии, гидроцефалии и ряд прочих заболеваний. Некоторые из болезней заметны уже у новорожденных, другие дают о себе знать только в пубертатном периоде или по достижению человеком 30 – 50 лет.

Полигенные заболевания

Данные патологии может объяснить не только генетическая предрасположенность, но и, в значительной степени, внешние факторы (неправильное питание, плохая экология и т.д). Полигенные заболевания также принято называть мультифакториальными. Обосновано это тем, что они появляются в результате действий многих генов. К наиболее часто встречающимся мультифакториальным болезням относятся: ревматоидный артрит, гипертония, ишемическая болезнь сердца, сахарный диабет, цирроз печени, псориаз, шизофрения и др.

Эти болезни составляют около 92 % от общего числа патологий, передающихся по наследству. С возрастом частота заболеваний возрастает. В детском возрасте количество больных составляет не менее 10 %, а в пожилом - 25-30 %.

К настоящему времени описано несколько тысяч генетических заболеваний, вот лишь краткий список некоторых из них:

Наиболее часто встречающиеся генетические заболевания Самые редкие генетические заболевания

Гемофилия (нарушение свертываемости крови)

Заблуждение Капграса (человек полагает, что кто-то из близких заменен клоном).

Дальтонизм (неспособность различать цвета)

Синдром Клейна-Левина (чрезмерная сонливость, нарушения поведения)

Муковисцидоз (нарушение функций органов дыхания)

Слоновья болезнь (болезненные разрастания кожи)

Расщепление позвоночника (позвонки не смыкаются вокруг спинного мозга)

Цицеро (психологическое расстройство, желание есть несъедобные вещи)

Болезнь Тея-Сакса (поражение ЦНС)

Синдром Стендаля (учащенное сердцебиение, галлюцинации, потеря сознания при виде произведений искусства)

Синдром Клайнфельтера (андрогенная недостаточность у мужчин)

Синдром Робена (порок челюстно-лицевой области)

Синдром Прадера-Вилли (задержка физического и интеллектуального развития, дефекты внешности)

Гипертрихоз (избыточный рост волос)

Фенилкетонурия (нарушение метаболизма аминокислот)

Синдром голубой кожи (голубой цвет кожных покровов)

Некоторые генетические заболевания могут проявляться буквально в каждом поколении. Как правило, они появляются не у детей, а с возрастом. Факторы риска (плохая экология, стресс, нарушения гормонального фона, неправильное питание) способствуют проявлению генетической ошибки. К таким заболеваниям относят диабет, псориаз, ожирение, гипертонию, эпилепсию, шизофрению, болезнь Альцгеймера и др.

Диагностика генных патологий

Не каждое генетическое заболевание обнаруживается с первого дня жизни человека, некоторые из них проявляют себя лишь по прошествии нескольких лет. В связи с этим очень важно проходить своевременные исследования на наличие генных патологий. Реализовать такую диагностику можно и на этапе планирования беременности, и в период вынашивания ребенка.

Существует несколько методов диагностики:

Биохимический анализ

Позволяет устанавливать заболевания, связанные с наследственным нарушением обмена веществ. Метод подразумевает под собой анализ крови человека, качественное и количественное исследование прочих биологических жидкостей организма;

Цитогенетический метод

Выявляет причины генетических заболеваний, кроющиеся в нарушениях в организации клеточных хромосом;

Молекулярно-цитогенетический метод

Усовершенствованный вариант цитогенетического метода, позволяющий обнаружить даже микроизменения и мельчайшие поломки хромосом;

Синдромологический метод

Генетическое заболевание во многих случаях может иметь те же симптомы, которые будут совпадать с проявлениями других, непатологических болезней. Метод заключается в том, что с помощью обследования генетика и специальных компьютерных программ из всего спектра симптомов выделяют только те, которые конкретно указывают на генетическое заболевание.

Молекулярно-генетический метод

На данный момент является самым достоверным и точным. Даёт возможность изучать ДНК и РНК человека, обнаруживать даже незначительные изменения, в том числе и в последовательности нуклеотидов. Используется с целью диагностирования моногенных болезней и мутаций.

Ультразвуковое исследование (УЗИ)

Для выявления заболеваний женской репродуктивной системы используют УЗИ органов малого таза. Для диагностики врожденных патологий и некоторых хромосомных заболеваний плода также используют УЗИ.

Известно, что около 60% самопроизвольных выкидышей в первом триместре беременности, обусловлены тем, что у плода было генетическое заболевание. Организм матери, таким образом, избавляется от нежизнеспособного эмбриона. Наследственные генетические заболевания могут также спровоцировать бесплодие, либо повторяющиеся выкидыши. Зачастую женщине приходится пройти множество безрезультатных обследований, пока она не обратится к врачу-генетику.

Лучшей профилактикой возникновения генетического заболевания у плода является генетическое обследование родителей во время планирования беременности. Даже будучи здоровыми, мужчина или женщина могут носить в своем генотипе поврежденные участки генов. Универсальный генетический тест способен выявить более ста заболеваний, которые основаны на генных мутациях. Зная о том, что хотя бы один из будущих родителей является носителем нарушений, врач поможет подобрать адекватную тактику подготовки к беременности и её ведения. Дело в том, что генные изменения, сопровождающие беременность, могут нанести непоправимый вред плоду и даже стать угрозой для жизни матери.

Во время беременности женщины, с помощью специальных исследований, иногда бывают диагностированы генетические заболевания плода, которые могут поставить вопрос о том, стоит ли вообще сохранять беременность. Наиболее ранний срок диагностики данных патологий – 9-ая неделя. Осуществляется эта диагностика с помощью безопасного неинвазивного ДНК теста Panorama. Тест заключается в том, что у будущей матери берут кровь из вены, с помощью метода секвенирования выделяют из неё генетический материал плода и изучают его на наличие хромосомных аномалий. Исследование способно выявить такие отклонения, как синдром Дауна, синдром Эдвардса, синдром Патау, микроделеционные синдромы, патологии половых хромосом и ряд других аномалий.

Взрослый же человек, пройдя генетические тесты, может узнать о своей предрасположенности к генетическим заболеваниям. В таком случае у него будет шанс прибегнуть к эффективным профилактическим мерам и предотвратить возникновение патологического состояния, наблюдаясь у специалиста.

Лечение генетических заболеваний

Любое генетическое заболевание представляет для медицины трудности, тем более что некоторые из них достаточно сложно диагностировать. Огромное количество болезней нельзя излечить в принципе: синдром Дауна, синдром Клайнфельтера, муковсицидоз и т.д. Некоторые из них серьезно сокращают продолжительность жизни человека.

Основные методы лечения:

  • Симптоматический

    Снимает причиняющие боль и дискомфорт симптомы, препятствует прогрессу болезни, но не устраняет её причину.

    врач-генетик

    Киевская Юлия Кирилловна

    Если у Вас:

    • возникли вопросы по результатам пренатальной диагностики;
    • плохие результаты по итогам скрининга
    предлагаем Вам записаться на бесплатную консультацию врача генетика *

    *консультация проводится для жителей любого региона России через Интернет. Для жителей Москвы и Подмосковья возможна личная консультация (при себе иметь паспорт и действующий полис ОМС)


Группы генетических заболеваний

Развитие этой перспективной области стало возможным после определения нуклеотидной последовательности генома человека.

Наследственность и среда оказываются этиологическими факторами (причина без которой болезнь никогда не разовьется), но доля их участия при каждой болезни своя, причем чем больше доля одного фактора, тем меньше другого. Все формы патологии с этой точки зрения можно разделить на четыре группы, между которыми нет резких границ:

Первую группу составляют собственно наследственные болезни, у которых этиологическую роль играет патологический ген. В эту группу входят моногенно обусловленные болезни (такие как, например, фенилкетонурия, гемофилия), а также хромосомные болезни.

К хромосомным болезням относят формы патологии, которые клинически выражаются множественными пороками развития, а в качестве генетической основы имеют отклонения от нормального содержания в клетках организма количества хромосомного материала.

Вторая группа - это тоже наследственные болезни, обусловленные патологической мутацией, однако для их проявления необходимо специфическое воздействие среды. В некоторых случаях такое "проявляющее" действие среды очень наглядно, и с исчезновением действия средового фактора клинические проявления становятся менее выраженными. Таковы проявления недостаточности гемоглобина HbS у его гетерозиготных носителей при пониженном парциальном давлении кислорода. В других случаях (например, при подагре) для проявления патологического гена необходимо длительное неблагоприятное воздействие среды (особенности питания).

Третью группу составляет подавляющее число распространенных болезней, особенно болезней зрелого и преклонного возраста (гипертоническая болезнь, язвенная болезнь желудка, большинство злокачественных образований и другие). Основным этиологическим фактором в их возникновении служит неблагоприятное воздействие среды, однако, реализация действия фактора зависит от индивидуальной генетической предрасположенности организма. Необходимо отметить, что разные болезни с наследственным предрасположением неодинаковы по относительной роли наследственности и среды. Среди них можно было бы выделить болезни со слабой, умеренной и высокой степенью наследственного предрасположения.

Четвертая группа болезней - это сравнительно немногие формы патологии, в возникновении которых исключительную роль играет фактор среды. Обычно это экстремальный средовой фактор, по отношению к действию которого организм не имеет средств защиты (травмы, особо опасные инфекции). Генетические факторы в этом случае играют роль в течении болезни, влияют на ее исход.

Диагностика генетических заболеваний

Генная терапия включает следующие этапы:

1) получение клеток от больного (в генной терапии разрешено использовать только соматические клетки человека);

2) введение в клетки лечебного гена для исправления генетического дефекта;

3) отбор и размножение "исправленных" клеток;

4) введение "исправленных" клеток в организм пациента.

Впервые успешно применить генную терапию удалось в 1990 г. Четырехлетней девочке, страдающей тяжелым иммунодефицитом (дефект фермента аденозиндезаминазы), были введены собственные лимфоциты со встроенным нормальным геном аденозиндезаминазы. Лечебный эффект сохранялся в течение нескольких месяцев, после чего процедуру пришлось регулярно повторять, поскольку исправленные клетки, как и другие клетки организма, имеют ограниченный срок жизни. В настоящее время генную терапию используют для лечения более десятка наследственных заболеваний, в том числе гемофилии, талассемии, муковисцидоза.

Трудности диагностики обусловлены прежде всего тем, что формы наследственных болезней очень многообразны (около 2000) и каждая из них характеризуется большим разнообразием клинической картины. Некоторые формы встречаются крайне редко, и врач в своей практике может не встретиться с ними. Поэтому он должен знать основные принципы, которые помогут ему заподозрить нечасто встречающиеся наследственные заболевания, а после дополнительных консультаций и обследований поставить точный диагноз.

Диагностика наследственных болезней основывается на данных клинического, параклинического и специального генетического обследования.

В тех случаях, когда диагноз больному не поставлен и необходимо уточнить его, особенно при подозрении на наследственную патологию, используют следующие специальные методы:

1) подробное клинико-генеалогическое обследование проводится во всех случаях, когда при первичном клиническом осмотре возникает подозрение на наследственное заболевание. Здесь следует подчеркнуть, что речь идет о подробном обследовании членов семьи. Это обследование заканчивается генетическим анализом его результатов;

2) цитогенетическое исследование может проводиться у родителей, иногда у других родственников и плода. Хромосомный набор изучается при подозрении на хромосомную болезнь для уточнения диагноза. Большую роль цитогенетического анализа составляет пренатальная диагностика.

3) биохимические методы широко применяются в тех случаях, когда имеется подозрение на наследственные болезни обмена веществ, на те формы наследственных болезней, при которых точно установлены дефект первичного генного продукта или патогенетическое звено развития заболевания.

4) иммуногенетические методы применяют для обследования пациентов и их родственников при подозрении на иммунодефецитные заболевания, при подозрении на антигенную несовместимость матери и плода, при установлении истинного родительства в случаях медико-генетического консультирования или для определения наследственного предрасположения к болезням.

5) цитологические методы применяются для диагностики пока еще небольшой группы наследственных болезней, хотя возможности их достаточно велики. Клетки от больных можно исследовать непосредственно или после культивирования цитохимическими, радиоавтографическими и другими методами.

6) метод сцепления генов применяется в тех случаях, когда в родословной имеется случай заболевания и надо решить вопрос, унаследовал ли пациент мутантный ген. Это необходимо знать в случаях стертой картины заболевания или позднего его проявления.

В настоящее время проводится массовый скрининг новорожденных в роддомах для выявления некоторых наследственных заболеваний. Данные исследования позволяют поставить диагноз в ранние сроки и своевременно назначить эффективное лечение.

Больших успехов в последнее десятилетие достигла пренатальная диагностика наследственных заболеваний и врожденных пороков развития. Широкое распространение в медицинской практике получили следующие методы: ультразвуковое исследование, амниоцентез, биопсия хориона, кордоцентез, определение альфа-фетопротеина и хориогонина, ДНК- диагностика.

Огромный вклад в диагностику хромосомных болезней внесли генетики, внедрив в практику медицины метод дифференциальной окраски хромосом. С помощью этого метода можно определить количественные и структурные перестройки хромосом.

Большое теоретическое и практическое значение имеет изучение групп сцепления у человека и построение карт хромосом. В настоящее время у человека относительно изучены все 24 группы сцепления.

Наиболее распространенным и эффективным методом профилактики наследственных болезней и врожденных пороков развития является медико-генетическое консультирование, направленное на предупреждение появления в семье больных детей. Врач-генетик рассчитывает риск рождения ребенка с тяжелой наследственной патологией и при высоком риске, при отсутствии методов пренатальной диагностики дальнейшее деторождение в данной семье не рекомендуется.

С целью предупреждения рождения детей с наследственно детерминированными болезнями необходимо объяснять вред близкородственных браков молодым людям, планирующим создание семьи.

Беременным женщинам в возрасте старше 35 лет необходимо обследование у врача-генетика для исключения у плода хромосомной патологии.

Таким образом, применение достижений генетики в практической медицине способствует предупреждению рождения детей с наследственными заболеваниями и врожденными пороками развития, ранней диагностике и лечению больных.

Принято считать специфический генетический риск до 5% низким, до 10% - повышенным в легкой степени, до 20% - средним и выше 20% - высоким. Можно пренебречь риском, не выходящим за пределы повышенного в легкой степени, и не считать его противопоказанием к дальнейшему деторождению. Лишь генетический риск средней степени расценивается как противопоказание к зачатию или как показание к прерыванию уже имеющейся беременности, если семья не хочет подвергаться риску.

Лечение генетических заболеваний

Длительное время диагноз наследственной болезни оставался как приговор обреченности больному и его семье. Несмотря на успешную расшифровку формальной генетики многих наследственных заболеваний, лечение их оставалось лишь симптоматическим.

Симптоматическое лечение применяют при всех наследственных болезнях. Для многих форм патологии симптоматическое лечение является единственным.

Однако следует понимать, что ни один из существующих ныне методов не устраняет причину заболевания, так как не восстанавливает структуру поврежденных генов. Действие каждого из них продолжается сравнительно короткое время, поэтому лечение должно быть непрерывным. Кроме того, приходиться признать ограниченность возможностей современной медицины: еще многие наследственные болезни не поддаются эффективному подавлению. Особые надежды в связи с этим возлагают на использование методов генной инженерии для введения нормальных, неизмененных генов в клетки больного человека. Таким путем можно будет добиться кардинального излечения данного больного, но, однако это дело будущего.

Этиологическое лечение любых наследственных болезней является наиболее оптимальным, поскольку оно устраняет первопричину заболевания и полностью излечивает его. Однако устранение причины наследственного заболевания означает такое серьезное "маневрирование" с генетической информацией в живом организме человека, как "включение" нормального гена (или подсадку его), "выключение" мутантного гена, обратная мутация патологического аллеля. Эти задачи достаточно трудны даже для манипулирования с прокариотами. К тому же, чтобы провести этиологическое лечение какого-либо наследственного заболевания, надо изменить структуру ДНК не в одной клетке, а во всех функционирующих клетках (и только функционирующих). Прежде всего, для этого нужно знать, какое изменение в ДНК произошло при мутации, то есть наследственная болезнь должна быть записана в химических формулах. Сложности этой задачи очевидны, хотя методы для их решения уже имеются в настоящее время.

Принципиальная схема для этиологического лечения наследственных заболеваний как бы составлена. Например, при наследственных болезнях, сопровождающихся отсутствием активности фермента (альбинизм, фенилкетонурия), необходимо синтезировать данный ген и ввести его в клетки функционирующего органа. Выбор способов синтеза гена и его доставки в соответствующие клетки широкий, и они будут пополняться с прогрессом медицины и биологии. Вместе с тем необходимо отметить важность соблюдения большой осторожности при применении методов генетической инженерии для лечения наследственных болезней, даже если будут сделаны решительные прорывы в синтезе соответствующих генов и способах их доставки в клетки-мишени. Генетика человека еще не располагает достаточными сведениями обо всех особенностях функционирования генетического аппарата человека. Пока еще неизвестно, как он будет работать после введения дополнительной генетической информации.



ОБЩИЕ ВОПРОСЫ

Эмпирические попытки лечить больных с наследственной патологией, предпринимавшиеся в течение 200 лет вплоть до 30-х годов XX в., не дали положительных результатов. Диагноз наследственной болезни оставался приговором больному и его семье: такие семьи считали вырождающимися. Эта позиция в медицине в первые десятилетия XX в. опиралась, по-видимому, также на генетическую концепцию об очень строгой детерминации менделирующих наследственных признаков. В связи с этим в начале XX в. возникла негативная евгеника, призывавшая насильственно ограничить деторождение у лиц с наследственной патологией. К счастью, практическая реализация негативной евгеники была недолгой из-за общественного давления.

Переломным периодом в отношении лечения наследственных болезней можно считать 20-30 годы, так, в середине 20-х годов в экспериментах на дрозофиле были получены факты, показывающие разную степень проявления действия генов в зависимости от влияния генотипической или внешней среды. На основе этих фактов были сформированы понятия о пенетрантности, экспрессивности и специфичности действия генов. Стала возможной логическая экстраполяция: если среда влияет на экспрессивность генов, то, следовательно, можно уменьшить или исключить патологическое действие генов при наследственных болезнях. На основе этих положений выдающийся русский биолог Н.К. Кольцов предложил и обосновал новое направление в медицинской генетике - евфенику - учение о хорошем проявлении наследственных задатков. По его мнению, евфеника должна изучать все условия среды, стимулирующие проявления положительных и непроявления отрицательных (наследственные болезни) наследственных свойств.

* Исправлено и дополнено при участии д-ра мед. наук, проф. А.Ю. Асанова.

Впервые в мире невропатолог и генетик С.Н. Давиденков, основываясь на собственном клиническом опыте и достижениях экспериментальной генетики, в начале 1930-х годов указал на ошибочность мнения о неизлечимости наследственных болезней и вырождении семей с такими болезнями. Он, как и Н.К. Кольцов, исходил из признания роли факторов внешней и внутренней среды в проявлении наследственных болезней. С.Н. Давиденков настаивал на принципиальных возможностях вмешательства в функционирование патологических аллелей и сам много сделал для разработки методов лечения наследственных болезней нервной системы. Такая исходная позиция позволяла разрабатывать различные подходы и методы лечения лиц с наследственными болезнями на основе достижений генетики, теоретической и клинической медицины. Однако отсутствие сведений о патогенетических механизмах наследственных болезней в тот период ограничивало возможности разработки методов. Все подобные попытки, несмотря на правильные теоретические установки, оставались эмпирическими.

Лечение различных наследственных болезней может включать как традиционные в медицине подходы (лекарственные препараты, специфические диеты, хирургическую коррекцию и др.), так и воздействия на наследственные структуры, «повинные» в развитии болезни. Уровни, на которые направлено терапевтическое воздействие, во многом определяются состоянием знаний о первичном генетическом дефекте, его клинических проявлениях, взаимодействии с факторами среды и пониманием путей, на которых возможно исправление дефекта. Обобщенная схема точек приложения лечебных воздействий приведена на рис. 10.1.

В настоящее время благодаря успехам генетики в целом и существенному прогрессу теоретической и клинической медицины можно

Рис. 10.1. Принципиальная схема «мишеней» для лечения наследственных болезней

утверждать, что уже многие наследственные болезни успешно лечатся. Такая установка должна быть у врача.

Общие подходы к лечению наследственных болезней сходны с подходами к лечению болезней любой другой этиологии. При наследственных болезнях полностью сохраняется принцип индивидуализированного лечения, ведь врач и при наследственной патологии лечит не просто болезнь, а болезнь конкретного человека. Возможно, что при наследственной патологии принцип индивидуализированного лечения должен соблюдаться еще строже, потому что гетерогенность наследственных болезней далеко не расшифрована, а, следовательно, одну и ту же клиническую картину могут вызвать разные наследственные болезни с различным патогенезом. В зависимости от условий пре- и постнатального онтогенеза, а также от всего генотипа человека фенотипические проявления мутаций у конкретного человека могут модифицироваться в ту или другую сторону. Следовательно, необходима разная коррекция наследственной болезни у разных пациентов.

Как и при лечении других хорошо изученных болезней (например, инфекционных), можно выделить 3 подхода к лечению наследственных болезней и болезней с наследственной предрасположенностью: симптоматический, патогенетический, этиотропный. Применительно к наследственным болезням в отдельную группу можно выделить хирургические методы, поскольку иногда они выполняют функции симптоматической терапии, иногда - патогенетической, иногда - и той, и другой.

При симптоматическом и патогенетическом подходах используют все виды современного лечения (лекарственное, диетическое, рентгенорадиологическое, физиотерапевтическое, климатическое и т.д.). Генетический диагноз, клинические данные о состоянии больного и вся динамика болезни определяют поведение врача на протяжении всего периода лечения с постоянным и строгим соблюдением гиппократовского принципа «не навреди». При лечении наследственных болезней надо быть особенно внимательным в соблюдении этических и деонтологических норм: часто такие больные имеют тяжелую хроническую патологию с детского возраста.

СИМПТОМАТИЧЕСКОЕ ЛЕЧЕНИЕ

Хотя неспецифическое лечение не является главным, оно фактически используется всегда, в том числе при лечении пациентов с наследственными болезнями. Симптоматическое лечение применяют

при всех наследственных болезнях, даже если врач располагает методами патогенетической терапии. Для многих форм наследственной патологии симптоматическое лечение остается единственным.

Лекарственная симптоматическая терапия разнообразна и зависит от формы наследственных болезней. Один из древних примеров симптоматической терапии, сохранившейся до наших дней, - применение колхицина при острых приступах подагрического артрита. Такое лечение использовали еще греки в античном периоде. Другими примерами симптоматического лечения могут быть применение анальгетиков при наследственных формах мигрени, специфических транквилизаторов при психических проявлениях наследственных болезней, противосудорожных препаратов при судорожных симптомах и т.д. Успехи этого раздела терапии связаны с прогрессом фармакологии, обеспечивающим все более широкий выбор лекарств. Вместе с тем расшифровка патогенеза каждой болезни позволяет понять причину возникновения симптома, а на этой основе становится возможной более тонкая лекарственная коррекция симптомов, если первичная патогенетическая терапия еще невозможна.

В качестве примера можно привести общую схему многокомпонентного симптоматического лечения муковисцидоза. Первичное звено патогенеза (нарушение транспорта ионов натрия и хлора) скорригировать при этом заболевании еще не удается.

В связи с тем, что у больных выделяется много хлорида натрия с потом, детям с муковисцидозом в жарком сухом климате рекомендуется дополнительно добавлять поваренную соль в пищу. В противном случае иногда может наступить коллапс с тепловым ударом.

Недостаточность функции поджелудочной железы у больных (рано или поздно это наступает) восполняется препаратами сухих экстрактов поджелудочной железы животных или ферментов в капсулах (панкреатин, панзинорм  , фестал  ) и желчегонных средств. При клинических признаках нарушения функции печени проводится курс соответствующей терапии (эссенциале  , метионин, холин и др.).

Наиболее серьезными и трудными для лечения являются нарушения дыхательных путей. Закупорка просветов малых бронхов густой слизью обусловливает развитие инфекции в легочной ткани. На закупорку бронхов и инфекцию направлена симптоматическая (почти патогенетическая) терапия. Для уменьшения обструкции применяют бронхоспазмолитические

и отхаркивающие смеси (изопреналин, эуфиллин  , атропин, эфедрин и др.), препараты муколитического действия, в основном тиолы. Способ введения препарата (в ингаляциях, внутрь, внутримышечно) зависит от выраженности клинической картины. Применяют лекарства, уменьшающие внутриклеточную продукцию слизи, например мукодин  (карбоцистеин). - Лечение воспалительных осложнений в легких при муковисцидозе представляет трудную задачу, поскольку эти осложнения обусловлены несколькими видами бактерий, а иногда и грибов. С этой целью проводят интенсивную микробиологически контролируемую антибиотикотерапию (цефалоспорины третьего поколения и др.), а также лечение фторхинолонами для борьбы с синегнойной инфекцией. Антибиотики выбирают в зависимости от чувствительности микрофлоры. Наибольший эффект дает введение антибиотиков в ингаляциях и парентерально. Как видно на примере лекарственного лечения муковисцидоза, многосимптомные болезни требуют применения нескольких фармакокинетически совместимых лекарств.

Симптоматическое лечение бывает не только лекарственным. Многие виды физических методов лечения (климатотерапия, бальнеолечение, разные виды электротерапии, теплолечение) применяются при наследственных болезнях нервной системы, наследственных болезнях обмена веществ, заболеваниях скелета. После таких курсов лечения больные чувствуют себя намного лучше, продолжительность их жизни увеличивается.

Практически нет таких наследственных болезней, при которых не было бы показано физиотерапевтическое лечение. Например, лекарственное лечение муковисцидоза постоянно подкрепляется многообразными физиотерапевтическими процедурами (ингаляции, массаж и др.).

К симптоматическому можно отнести рентгенорадиологическое лечение при наследственно обусловленных опухолях до и после хирургического вмешательства.

Возможности симптоматического лечения при многих болезнях еще далеко не исчерпаны, особенно это касается лекарственной и диетической терапии.

Следует подчеркнуть, что симптоматическое лечение будет использоваться в большом объеме и в будущем наряду с самым совершенным патогенетическим или даже этиотропным лечением наследственных болезней.

ПАТОГЕНЕТИЧЕСКОЕ ЛЕЧЕНИЕ

Лечение любых болезней путем вмешательства в патогенез всегда эффективнее, чем симптоматическое лечение. При наследственных болезнях патогенетические методы также наиболее обоснованы, хотя и не противопоставляются симптоматическому лечению. По мере изучения патогенеза каждой болезни появляются различные возможности вмешательства в этот процесс, в течение болезни или в выздоровление. Клиническая медицина развивалась на основе теоретических представлений о патологических процессах. Таким же путем идет клиническая генетика в разработке методов лечения.

Для патогенетического лечения наследственных болезней в последние годы применяют принципиально новые подходы, основанные на достижениях молекулярной и биохимической генетики. При описании генных болезней (см. гл. 4) приводились примеры расшифрованных нарушенных звеньев обмена, всех биохимических механизмов, по которым развивается наследственно обусловленный патологический процесс, - от аномального генного продукта до клинической картины болезни. Естественно, что на этой основе можно целенаправленно вмешиваться в патогенез болезни, а такое лечение фактически равнозначно этиотропному. Хотя первопричина (т.е. мутантный ген) и не устраняется, но цепь патологического процесса прерывается, и патологический фенотип (болезнь) не развивается (т.е. происходит нормокопирование).

Патогенетическое лечение должно расширяться по мере прогресса генетики развития. Пока ее вклад в разработку методов лечения наследственной патологии незначителен, хотя успехи последних лет не вызывают сомнений. В настоящее время лечение основано на коррекции отдельных нарушенных звеньев, но более эффективно было бы вмешиваться в патологический процесс на уровне системных реакций.

При патогенетических подходах к лечению наследственных болезней исходят из того, что у больных либо образуется аномальный белок (фермент), либо нормального белка вырабатывается недостаточно (до полного отсутствия). За этими событиями следуют изменения цепи превращения субстрата или его продукта. Знание этих принципов и конкретных путей реализации действия гена помогает правильно разрабатывать схемы лечения и даже терапевтическую стратегию. Это особенно четко можно проследить на примере наследственных болезней обмена веществ.

Рис. 10.2. Возможные подходы к патогенетическому лечению наследственных болезней

В обобщенном (может быть, немного упрощенном) виде возможные подходы к лечению наследственных болезней обмена веществ представлены на рис. 10.2. Видно, что для различных болезней могут быть использованы разные пути коррекции. Для одной и той же болезни можно использовать вмешательства в разных звеньях и на различных этапах развития патологического процесса.

В целом патогенетические подходы к лечению наследственных болезней в зависимости от уровня биохимического дефекта можно представить следующим образом. Лечение схематично сводится к возмещению или выведению чего-либо. Если ген не работает, то необходимо возместить его продукт; если ген производит не то, что

нужно, и образуются токсичные продукты, то необходимо удаление таких продуктов и возмещение основной функции; если ген производит слишком много продукта, то его избыток удаляют.

Коррекция обмена на уровне субстрата

Такое вмешательство - одна из наиболее частых форм лечения наследственных болезней. Коррекцию можно обеспечить разными путями, примеры которых приведены ниже. Субстратом в данном случае называется тот компонент пищи, который подвергается метаболизму с помощью генетически детерминируемого фермента (например, фенилаланин, галактоза), а при наследственной болезни он является участником патологической реакции.

Ограничение определенных веществ в пище (диетическое ограничение) было первой успешной мерой в лечении наследственных болезней обмена, при которых отсутствуют соответствующие ферменты для нормального превращения субстратов в продуктах питания. Накопление некоторых токсичных соединений или продуктов их обмена приводит к постепенному развитию болезни. При фенилкетонурии назначают диету с низким содержанием фенилаланина. Несмотря на отсутствие фенилаланингидроксилазы печени, тем самым прерывается патогенетическое звено развития болезни. Ребенок, находившийся несколько лет на искусственной диете, уже не будет страдать тяжелой формой болезни. Спустя несколько лет, чувствительность нервной системы к фенилаланину и продуктам его превращения резко снижается, и диетическое ограничение может быть уменьшено. Ограничение диеты не обязательно означает составление специального пищевого рациона. Например, новый метод ограничения поступления фенилаланина с пищей при фенилкетонурии основан на приеме внутрь желатиновых капсул, содержащих растительный фермент, который освобождает пищевые продукты от фенилаланина. При таком лечении концентрация фенилаланина в крови уменьшается на 25%. Этот метод особенно целесообразно применять у более взрослых пациентов с фенилкетонурией и беременных, не нуждающихся в строгом соблюдении диеты.

Диетическое ограничение применяется при лечении многих наследственных болезней обмена углеводов и аминокислот (галактоземии, наследственной непереносимости фруктозы и лактозы, аргининемии, цитруллинемии, цистинурии, гистидинемии, метилмалоновой ацидемии, тирозинемии, пропионовой ацидемии) и других

болезней с известным первичным дефектом. Применяются диеты, специфичные для каждого заболевания.

Ограничением определенных веществ в диете можно также лечить болезни, для которых еще не расшифрован дефект первичного продукта гена. Эмпирически установлено, например, что при целиакии (см. гл. 7) постоянные диспепсические явления провоцирует глютен. Для лечения этой болезни достаточно исключить из пищи продукты, содержащие клейковину.

Хотя селективное ограничение определенных веществ в пище широко используется для повышения эффективности лечения некоторых наследственных болезней обмена веществ, остается еще много нерешенных вопросов. Например, несмотря на 35-летний опыт лечения фенилкетонурии, еще не полностью определены оптимальные границы диеты, продолжительность курса лечения для детей, необходимость ограничения при менее тяжелых формах ферментативной недостаточности, принципы индивидуализации диеты. Диетическое ограничение должно проводиться под строгим биохимическим контролем обмена веществ.

Диетическое добавление применяется реже, чем ограничение, но этот прием также эффективен при патогенетическом лечении и вошел в практику лечения двух болезней обмена.

При синдроме Хартнапа в результате дефекта транспортной функции клеток слизистой оболочки кишечника возникает мальабсорбция триптофана. Биохимическим следствием этого становится отсутствие триптофана в крови, гипераминоацидоз, эндогенный дефицит никотиновой кислоты. У пациентов наблюдаются дерматологические, неврологические и психические проявления пеллагры. Симптомы болезни уменьшаются или даже исчезают при введении в рацион ребенка продуктов с высоким содержанием белка (4 г/кг в сутки) и добавлении никотинамида или никотиновой кислоты (по 40-200 мг 4 раза в сутки).

Особенно убедительный аргумент в пользу лечения наследственных болезней с помощью диетического добавления дает лечение гликогеноза III типа (амило-1,6-глюкозидазная недостаточность). Это заболевание сопровождается гепатоспленомегалией, гипогликемией натощак, прогрессирующей миопатией, мышечной атрофией, кардиомиопатией в результате нарушения аланиноглюкозного цикла (низкая концентрация аланина). Это приводит к распаду аминокислот в мышцах при глюконеогенезе. У большинства больных детей наступает улучшение, если белки обеспечивают 20-25% энергетической ценности пищи, а углеводы - не более 40-50%.

Усиленное выведение субстрата патологической реакции может осуществляться разными методами, которые снижают концентрацию токсичного субстрата. Полного освобождения от патологических продуктов обмена добиться трудно. Примером усиленного выведения субстрата является влияние хелатов при гепатолентикулярной дегенерации. Например, пеницилламин связывает, мобилизует и ускоряет выведение внутриклеточно накопленных ионов меди.

При гемоглобинопатиях необходимо усиленное выведение железа, чтобы не развивался гемосидероз паренхиматозных органов.

Применяемый для этих целей дефероксамин (десферал *) накапливает ферритины и освобождает организм от излишнего железа.

Можно эффективно применять и непрямые метаболические пути для выведения субстрата. Например, нормальный уровень мочевой кислоты в крови можно обеспечить выведением остаточного азота в форме не только мочевины, но и ее метаболитов. Такой прием применяется для лечения наследственных болезней, обусловленных многими энзимопатиями цикла мочевины. Подобные примеры известны и для других форм наследственных болезней обмена веществ.

Выше были приведены примеры усиленной элиминации субстратов с помощью лекарств. Этих же целей можно добиться с помощью физико-химических методов освобождения от накопленного в крови субстрата (плазмафереза и гемосорбции).

С помощью плазмафереза удаляется большой объем плазмы, содержащей токсичное вещество. Плазмаферез можно применять для освобождения крови от излишка липидов, жирных кислот, фитановой кислоты. Этот метод эффективно используется при лечении болезни Рефсума. Сделаны первые успешные попытки лечения плазмаферезом двух лизосомных болезней накопления - болезни Фабри и болезни Гоше.

Гемосорбция помогает селективно удалять вещества или классы веществ путем их связывания с родственными лигандами. Этот метод уже применяется для лечения семейной гиперхолестеринемии. В качестве лиганда для экстракорпорального связывания ЛПНП используют гепарин-агарозу, что, к сожалению, дает кратковременный эффект. Уровень холестерина возвращается к исходному через 3-7 сут после лечения.

Альтернативные пути обмена при лечении наследственных болезней приведены в табл. 10.1.

Таблица 10.1. Альтернативные пути обмена при лечении наследственных болезней

Указанный способ лечения во многом сходен с методами усиленного выведения субстрата. Разница заключается только в способах достижения цели: в одном случае усиленно выводится непосредственно субстрат, а в другом - субстрат сначала превращается в какое-то соединение, а затем это соединение удаляется.

Метаболическая ингибиция используется тогда, когда надо затормозить синтез накапливаемого при наследственной болезни субстрата или его предшественника. В качестве ингибиторов применяют разные физиологически активные соединения. Например, при синдроме Леша-Найхана и подагре используют аллопуринол, который ингибирует ксантиноксидазу, благодаря чему уменьшается концентрация мочевой кислоты в крови. Ципрофибрат ингибирует синтез

глицеридов и поэтому эффективно снижает концентрацию липидов у пациентов с гиперхолестеринемией (тип III). Стрихнин конкурирует в связывании глицина с рецепторами в ЦНС, что улучшает дыхательную и моторную функции, угнетение которых вызвано высоким содержанием глицина в спинномозговой жидкости при тяжелой некетоновой гиперглицинемии.

Коррекция обмена на уровне продукта гена

Этот подход применяется уже давно, поскольку во многих случаях в клинической медицине для некоторых болезней была установлена патогенетически ключевая роль отсутствия некоторых веществ (инсулина, гормонов роста, антигемофильного глобулина и др.).

Возмещение продукта (или добавление) с целью коррекции обмена применяется при таких нарушениях, патогенез которых обусловлен аномальным ферментом, не обеспечивающим выработку продукта, или другим биологически активным соединением.

Примеров эффективных подходов к «исправлению» наследственных нарушений обмена путем возмещения продукта уже много: введение необходимых стероидов при врожденной гиперплазии надпочечников, тироксина при гипотиреоидизме, гормона роста при гипофизарной карликовости, уридина при оротовой ацидурии. К сожалению, пока еще нет примеров возмещения внутриклеточных белков, хотя попытки в этом направлении предпринимались (например, при лечении лизосомных болезней).

Подобные примеры известны не только для нарушений обмена, но и для других наследственных болезней. Так, введение антигемофильного глобулина предупреждает кровоточивость при гемофилии, γ-глобулин помогает при агаммаглобулинемии, инсулин - при диабете.

При энтеропатическом акродерматите развивается недостаточность цинка из-за дефекта цинксвязывающего фактора в кишечнике. В этом случае состояние больных одинаково улучшают и введение грудного молока, содержащего цинксвязывающий фактор, и прием препаратов цинка внутрь. Как только концентрация цинка в крови достигает нормального уровня, состояние больных сразу улучшается.

Для лечения по принципу возмещения продукта надо знать тонкие механизмы патогенеза и вмешиваться в эти механизмы (возмещать продукт) осторожно и внимательно. Так, предварительные попытки лечения болезни Менкеса путем возмещения меди не при-

вели к успеху, хотя концентрация меди и церулоплазмина в крови больных достигала нормального уровня. Оказалось, что дефект при данной болезни обусловлен нарушением регуляции синтеза медьсвязывающего белка, обеспечивающего внутриклеточное содержание меди. По этой причине препараты меди не улучшали состояние больных.

Необходимость знания тонких механизмов обмена для лечения можно показать на примере сцепленной с Х-хромосомой гипофосфатемии. При этом заболевании первичный почечный дефект всасывания фосфата ведет к нарушению (снижению) минерализации костей (рахит) и гипокальциемии. Прием внутрь фосфата и 1,25- дигидроксихолекальциферола улучшает минерализацию костей и уменьшает гипокальциемию, но не изменяет первичного дефекта потери фосфата с мочой. В связи с этим имеется большая опасность возникновения гиперкальциемии, а значит, в процессе лечения надо контролировать содержание кальция в крови.

В целом можно ожидать дальнейших сдвигов в патогенетическом лечении путем возмещения продуктов (белков, гормонов) в связи с успехами физико-химической биологии, генной инженерии и биотехнологии. Генно-инженерными методами уже получают специфические белки и гормоны человека, необходимые для восполнения нарушенного звена обмена при лечении наследственных болезней (инсулин, соматотропин, ИФН и др.).

Хорошо известны успехи в получении и разведении трансгенных лабораторных животных. Хотя технически создание трансгенных сельскохозяйственных животных намного труднее, чем лабораторных, это решаемая задача. От крупных животных можно получить большое количество белка. Трансгенных животных, чьи клетки производят нужные белки, можно называть биореакторами. От них можно получать потомство, т.е. возможно воспроизводство из поколения в поколение.

Создание трансгенных животных начинается со сшивки двух генов, каждый из которых клонирован отдельно. Один ген кодирует нужный белок, другой взят из железы или другого органа, который будет производить этот белок. Например, если белок продуцируется с молоком, то специфическими органными генами будут гены из молочной железы.

Гибридная ДНК инъецируется в оплодотворенную яйцеклетку или в эмбрион. Примерно в 1-5% случаев ДНК встраивается

Рис. 10.3. Трансгенная свинья, которая продуцирует гемоглобин человека

Рис. 10.4. Трансгенный бык с геном человеческого лактоферрина. От него получены телята с таким же геном

в геном. Все яйцеклетки подсаживают в матку самок, а родившихся животных проверяют на присутствие гибридного гена. От животного-основателя получают потомство и таким образом создают стадо.

Один из примеров живых биореакторов - свинья, продуцирующая человеческий гемоглобин (рис. 10.3). Она «сконструирована» в 1991 г. Около 15% эритроцитов свиньи содержат человеческий гемоглобин. Его

можно отделить от свиного гемоглобина с помощью препаративных методов. Такой гемоглобин не содержит вирусы человека, хотя в отдельных случаях не исключаются аллергические реакции.

Другим трансгенным животным стала корова, которая производит человеческий лактоферрин, выделяемый с молоком. В результате подсадки трансгенной яйцеклетки родился бык (рис. 10.4), ставший отцом многих трансгенных телок, в последующем производящих лактоферрин с молоком.

Рис. 10.5. Трансгенная коза, в молоке которой содержится плазминогенный активатор (тромболитический фермент)

Получены и другие трансгенные животные. Трансгенная коза (рис. 10.5) выделяет с молоком активатор плазминогена, который растворяет тромбы, трансгенные кролики - фермент α-глюкозидазу для лечения болезни Помпе, трансгенные куры несут яйца с человеческими антителами.

В последние годы отечественные ученые разработали менее долгий и недорогой способ трансгеноза органов-мишеней. Необходимый ген вводят не в яйцеклетку, а непосредственно в молочную железу. Трансген у таких животных присутствует только в вымени. Получены соматические трансгенные коровы, свиньи и козы, служащие биореакторами для фармацевтической промышленности.

Коррекция обмена на уровне ферментов

Многоступенчатый путь превращения субстрата в процессе обмена осуществляется с помощью соответствующих ферментов. Большая группа наследственных болезней обусловлена мутациями в генах, детерминирующих синтез ферментов (энзимопатии). Вмешательство в развитие болезни (коррекция) на уровне фермента является примером патогенетического лечения первичных этапов, т.е. приближающегося к этиотропному лечению. Этот вид лечения применяется для коррекции наследственных болезней обмена веществ, при которых известен функционально аномальный фермент. Для такого лечения можно вводить кофактор или индуцировать (угнетать) синтез фермента с помощью лекарств либо возмещать недостаток фермента.

Введение кофактора используется при многих наследственных болезнях. Как известно, некоторые врожденные аномалии обмена связаны с нарушением синтеза или транспортировки специфических кофакторов, что изменяет нормальную каталитическую активность фермента. В этих случаях добавление соответствующего кофактора повышает активность фермента и в значительной мере исправляет метаболический дефект. Показано, что при витаминозависимых состояниях повышение остаточной активности мутантных ферментных комплексов обеспечивает не только биохимическое, но и клиническое улучшение состояния. Известны многочисленные примеры лечения наследственных болезней путем добавления кофакторов, далеко не исчерпывающая классификация которых представлена в табл. 10.2.

Таблица 10.2. Нарушения обмена, при лечении которых добавляют кофактор

Из таблицы 10.2 видно, что при лечении наследственных болезней один и тот же кофактор может выполнять разные функции. По-видимому, будет перспективным введение кофактора для внутриутробного лечения плода (как в случае β-зависимой метилмалоновой ацидемии).

Модификация ферментативной активности

Это уже сложившийся подход при лечении наследственных болезней обмена. Стратегия такого лечения отражена в табл. 10.3, в которой приведены отдельные примеры.

Таблица 10.3. Лечение наследственных болезней путем модификации ферментативной активности

Окончание таблицы 10.3

Индукцию синтеза фермента можно использовать для повышения остаточной ферментативной активности путем введения лекарств. Например, фенобарбитал и родственные ему препараты стимулируют функцию эндоплазматического ретикулума и синтез специфичных для него ферментов. В связи с этим фенобарбитал применяют для лечения синдромов Жильбера и Криглера-Найяра. При этом снижается уровень билирубина в плазме крови. Такой подход имеет определенное значение при болезнях, обусловленных недостаточной продукцией ферментов, вырабатываемых в эндоплазматическом ретикулуме.

Индукция синтеза ферментов с помощью даназола (дериват этинилтестостерона) применена для лечения недостаточности α 1 -антитрипсина и ангионевротического отека. При недостаточности α 1 -антитрипсина применение даназола в течение 30 дней существенно повышает уровень этого белка в сыворотке. Таким образом, данный метод можно использовать для предупреждения легочных осложнений.

Ангионевротический отек сопровождается снижением количества функционально активного сывороточного ингибитора эстеразы С на 50%. Применение андрогенов повышает в 3-5 раз уровень ингибитора эстеразы. Профилактический прием внутрь даназола снижает или предупреждает острый ангионевротический отек, оказывает минимальную вирилизацию и связан с наименьшей токсичностью для печени.

Подавление синтеза фермента используют для лечения острых порфирий, биохимическая основа которых заключается в повышенной выработке аминолевулинатсинтетазы. Гематин подавляет синтез этого фермента и быстро снимает острые приступы порфирии.

Возмещение фермента

Успехи современной энзимологии позволяют выделить этот раздел в патогенетическом лечении наследственных болезней. Это вмешательство на уровне первичного белкового продукта гена. Современные методы позволяют получить такое количество активного фермента для экспериментальных и клинических целей, которое необходимо для его восполнения при определенных наследственных болезнях. Выше разбирались случаи возмещающей терапии: гормоны при эндокринопатиях, антигемофильный глобулин при гемофилии, γ-глобулин при агаммаглобулинемии. По такому же принципу точного соответствия недостающего продукта строится стратегия ферментотерапии.

Главный вопрос современных разработок в области ферментотерапии - это методы доставки фермента в клетки-мишени и субклеточные образования, вовлеченные в патологию обмена.

Рабочая гипотеза экзогенного введения фермента основывалась на том, что лизосомы часто являются местом патологического процесса и в то же время играют основную роль в клеточном метаболизме. Возможность доставки ферментов в лизосомы, сохранение их активности в клетке и взаимодействие с субстратом были проверены в опытах с культурами фибробластов, полученных от лиц с различными лизосомными болезнями накопления. Ферменты, введенные в культуральную среду, улучшали обмен соответствующего соединения. Такая коррекция продемонстрирована при различных гликосфинголипидозах, мукополисахаридозах, гликогенозах и гликопротеинозах. Опыты показали, что возможно возмещение фермента, который проникает внутрь клетки, достигает лизосом и нормализует превращение субстрата. Однако внутримышечное, внутривенное и внутритрахеальное введение ферментов, полученных из грибов или органов крупного рогатого скота, ослабленным больным с гликогенозом, мукополисахаридозами, метахроматической лейкодистрофией и болезнью Фабри не дало серьезных положительных результатов. Следовательно, в стратегии ферментотерапии надо было определить основные направления, которые в суммарном виде представлены ниже.

Возможность получения достаточного количества стабильных, неиммуногенных и стерильных ферментов с высокой специфической активностью.

Защита введенной активности от биотрансформации и иммунного надзора, а также доставка фермента в ткань-мишень и субклеточные образования, вовлеченные в патологический процесс.

Модельная проверка на млекопитающих для оценки и выбора наилучшей стратегии ферментотерапии.

Соответствующим образом запланированные и разрешенные биохимические и клинические испытания на больных.

В 70-х годах XX в. была показана возможность получения ферментов из тканей человека и разработаны системы наблюдения за судьбой ферментов в организме млекопитающих. Первые клинические испытания были проведены при различных лизосомных нарушениях. Это были GМ2-ганглиозидоз (β-гексозаминидаза А из мочи), гликогеноз II типа (плацентарная α-галактозидаза), болезнь Фабри (плацентарная α-галактозидаза), болезнь Гоше (плацентарная β-глюкозидаза). Перед клиническим испытанием было установлено, что высокоочищенные ферменты человека гидролизируют естественный субстрат. Проверка показала, что ферменты при внутривенном или подкожном введении обнаруживаются в печеночной ткани. При этом концентрация ферментов в крови уменьшается, а в печени повышается. Однако они не проникают в мозг из-за барьерных функций мозговых оболочек. Отсюда следует вывод о необходимости специфической доставки ферментов в клетки-мишени при каждой болезни. Их доставка в разные клеточные структуры может потребовать специфической очистки или какой-либо химической модификации фермента.

В разработке методов лечения наследственных болезней ферментами в первую очередь надо ориентироваться на патогенетические механизмы болезней: в каких клетках, каким путем и в какой форме откладывается субстрат реакции, с одной стороны, и каким путем фермент в норме достигает субстрата, каковы промежуточные стадии обмена - с другой. Именно вмешательство в патофизиологический механизм, ответственный за синтез, распределение и накопление субстрата, можно использовать с терапевтической целью: в одних случаях надо увеличить время циркуляции фермента в крови, в других - способствовать доставке фермента в строго определенные клетки.

Из анализа первичной клеточной патологии при различных лизосомных болезнях накопления видно, что даже близкие по сути заболевания отличаются друг от друга.

Первичный дефект локализуется в нейронах (сфинголипидозы, гликопротеинозы), в клетках ретикулоэндотелиальной системы (болезнь Нимана-Пика, болезнь Гоше), эндотелии, шванновских клетках, поперечно-полосатой мускулатуре.

Экспериментальные разработки в области ферментотерапии наследственных болезней позволили объективно оценивать захват молекул фермента рецепторами, гепатоцитами, клетками ретикулоэндотелиальной системы, фибробластами, клетками эндотелия сосудов и т.д. Это увеличило возможности направленных разработок лечения наследственных болезней, в первую очередь с использованием новых методов доставки ферментов к клеткам-мишеням в синтетических пузырьках-носителях или микрокапсулах-липосомах либо в естественных элементах - аутологичных эритроцитах. Такие методы доставки разрабатываются для лечения не только наследственных болезней, но и другой патологии. Направленная доставка лекарственных веществ в органы, ткани и клетки - актуальная проблема для медицины в целом.

Современные успехи физико-химической биологии позволяют создавать новые формы микроинкапсулированных ферментных препаратов (опосредованная доставка) или обеспечивать более полный захват циркулирующего в крови фермента рецепторами клетокмишеней (опосредованная рецепция).

Липосома представляет собой многослойный пузырек с чередующимися водными и липидными слоями. При формировании липосом можно изменять заряд стенки, их величину, число слоев. К мембране липосом можно пришить антитела к клеткам-мишеням, что обеспечит более точную доставку липосом. Липосомы, нагруженные ферментами, при различных путях введения хорошо захватываются клетками. Их липидная оболочка разрушается эндогенной липазой, а освободившийся фермент взаимодействует с субстратом.

Наряду с созданием искусственных носителей - липосом - разрабатывают методы нагрузки эритроцитов ферментами. При этом можно использовать гомологичные или даже аутологичные эритроциты. Нагрузка ферментами может осуществляться путем гипотонизации, или диализа, или с помощью хлорпромазининдуцированного эндоцитоза.

Перспективы лечения наследственных болезней возмещением ферментов зависят от успехов энзимологии, клеточной инженерии, физико-химической биологии. Новые подходы должны обеспечить выделение высокоочищенных ферментов из специфических тканей человека, введение их в активной форме в клетку путем опосредованной рецепции или опосредованной доставки, предупреждение биоинактивации, исключение иммунных реакций. Уже имеются подходы к решению каждой из этих задач, поэтому можно надеяться на еще более успешное развитие ферментотерапии наследственных болезней.

ХИРУРГИЧЕСКОЕ ЛЕЧЕНИЕ

Хирургическое лечение наследственных болезней занимает существенное место в системе медицинской помощи больным. Это связано с тем, что, во-первых, многие формы наследственной патологии сопровождаются морфогенетическими отклонениями, включая пороки развития. Во-вторых, расширение возможностей хирургической техники сделало доступными многие трудные операции. В-третьих, реанимация и интенсивная терапия сохраняют жизнь новорожденным с наследственными болезнями, а такие пациенты нуждаются в последующей хирургической помощи.

Хирургическая помощь больным с наследственной патологией в общем виде включает удаление, коррекцию, трансплантацию. Операции часто направлены на устранение симптомов болезни. Однако в некоторых случаях хирургическая помощь выходит за рамки симптоматического лечения, приближаясь по эффекту к патогенетическому лечению. Например, для изменения пути патологического превращения субстратов патологических реакций можно использовать хирургическое шунтирование. При гликогенозах I и III типов делают анастомоз между воротной и нижней полой венами. Это позволяет части глюкозы после всасывания в кишечнике обходить печень и не откладываться в ней в виде гликогена. Аналогичный обходной путь предложен при семейной гиперхолестеринемии (тип IIа) - анастомоз между тощей и подвздошной кишками. Это приводит к снижению всасывания холестерина.

Примерами общехирургических видов лечения могут быть операция по поводу наследственного полипоза толстой кишки (ее удаление), спленэктомия при гемоглобинопатиях, удаление глаза при

ретинобластоме, почки при опухоли Вильмса и др. В ряде случаев хирургическое лечение является частью комплексной терапии. Например, при муковисцидозе возможен мекониальный илеус у новорожденных, в процессе развития болезни встречается пневмоторакс. И то и другое устраняется хирургическим путем.

Большое место в лечении наследственных болезней занимает реконструктивная хирургия: при незаращении верхней губы, врожденных пороках сердца, атрезии отделов ЖКТ, гипоспадии, для коррекции костно-мышечной системы и т.д.

Трансплантация органов и тканей как метод лечения наследственных болезней все больше входит в практику. Аллотрансплантация может рассматриваться как передача нормальной генетической информации пациенту с нарушением обмена веществ. Такой подход предполагает пересадку клеток, тканей и органов, содержащих нормальную ДНК, для продукции активных ферментов или других продуктов гена у реципиента. Он особенно эффективен тогда, когда патологический процесс ограничен одним органом или тканью, которые и пересаживают.

Аллотрансплантация уже выполняется при разных наследственных болезнях и позволяет непрерывно восполнять недостаток фермента, гормона, иммунных функций или эффективно предохранять орган от функциональных нарушений, обусловленных мутацией структурного гена. В таблице 10.4 перечислены наследственные болезни, при которых применяется аллотрансплантация.

Таблица 10.4. Применение аллотрансплантации для патогенетического лечения наследственных болезней

Окончание таблицы 10.4

Современная трансплантология обладает большими возможностями, и ее успехи можно использовать в лечении наследственных болезней. Имеются многочисленные сообщения об успешных пересадках органов (костного мозга, вилочковой железы, печени плода, донорской печени, поджелудочной железы, селезенки и особенно почки) при упомянутых в табл. 10.4 состояниях. Трансплантация исправляет патологические механизмы наследственных нарушений.

Помимо пересадки органов разрабатываются методы пересадки клеток, функция которых занимает ключевое место в патогенезе наследственных нарушений обмена. Лечение стволовыми клетками будет рассмотрено ниже.

В заключение следует обратить внимание на огромные возможности хирургического лечения наследственных болезней, используемые еще не в полной мере. В этом плане весьма перспективны микрохирургия и эндоскопическая хирургия.

ЭТИОТРОПНОЕ ЛЕЧЕНИЕ: КЛЕТОЧНАЯ И ГЕННАЯ ТЕРАПИЯ

Введение

Этиотропное лечение любых болезней оптимально, поскольку оно устраняет первопричину заболевания и в результате полностью его излечивает. Несмотря на успехи симптоматической и патогенетической терапии наследственных болезней, вопрос об их этиотропном лечении не снимается. Чем глубже будут знания в области теорети-

ческой биологии, тем чаще будет подниматься вопрос о радикальном лечении наследственных болезней.

Однако устранение причины наследственной болезни означает такие серьезные манипуляции с генетической информацией у человека, как доставка нормального гена в клетку, выключение мутантного гена, обратная мутация патологического аллеля. Эти задачи достаточно трудны даже при вмешательствах у простейших организмов. К тому же, чтобы провести этиотропное лечение какой-либо наследственной болезни, надо изменить структуру ДНК и не в одной клетке, а во многих функционирующих клетках (и только в функционирующих!). Прежде всего, для этого нужно знать, какое изменение произошло в гене в результате мутации, т.е. наследственная болезнь должна быть описана в химических формулах.

Сложности этиотропного лечения наследственных болезней очевидны, но уже имеются многочисленные возможности для их преодоления, создаваемые успешной расшифровкой генома человека и прогрессом молекулярной медицины.

Несколько принципиальных открытий в генетике и молекулярной биологии создали предпосылки для разработки и клинической проверки методов этиотропного лечения наследственных болезней (генная и клеточная терапия).

В экспериментах с РНК- и ДНК-содержащими вирусами опухолей (начало 1970-х годов) выявлена способность вирусов переносить гены в трансформированные клетки и сформулирована концепция использования вирусов как переносчиков генов, другими словами, концепция создания векторной системы (рекомбинантная ДНК). Успех, достигнутый в экспериментах с рекомбинантной ДНК, уже к середине 1970-х годов обеспечил почти неограниченные возможности в изоляции генов эукариот (в том числе и человека) и манипуляции с ними. В начале 80-х годов была доказана высокая эффективность переноса генов на основе векторных систем в клетки млекопитающих in vitro и in vivo.

Принципиальные вопросы генной терапии у человека решены. Во-первых, гены можно изолировать вместе с фланкирующими (пограничными) областями, содержащими в себе, по меньшей мере, важные регуляторные последовательности. Во-вторых, изолированные гены нетрудно встроить в чужеродные клетки. «Хирургия» трансплантации генов многообразна.

Условия генной терапии разрабатывались удивительно быстро. Первый протокол генной терапии у человека был составлен в 1987 г. и проверен в 1989 г., а с 1990 г. уже началась генная терапия больных.

Этиотропное лечение наследственных болезней может осуществляться на уровне клеток или генов. Организм больного должен получить дополнительную генетическую информацию, способную исправлять наследственный дефект, с геномом аллогенной клетки или в виде специально созданной генно-инженерной конструкции.

Под термином «клеточная терапия» понимают способ лечения путем трансплантации клеток. Пересаженные клетки сохраняют генотип донора, поэтому пересадку можно рассматривать как форму генотерапии, поскольку она приводит к изменению соматического генома. Генная терапия - способ лечения путем введения дополнительной генетической информации в клетки индивида на уровне ДНК или РНК (генно-инженерных конструкций) или путем изменения экспрессии генов.

В целом, к настоящему времени определились четыре направления этиотропного лечения:

Трансплантация аллогенных клеток (клеточная терапия);

Введение генно-инженерных конструкций в ткани больного (генная терапия);

Трансплантация трансгенных клеток с целевой генно-инженерной конструкцией (комбинированная терапия);

Изменение экспрессии генов (генная терапия).

Клеточная терапия

Трансплантация клеток или клеточная терапия - это в настоящее время часть бурно развивающейся регенеративной медицины. Применительно к лечению наследственных болезней речь идет о трансплантации аллогенных клеток, потому что аутологичная пересадка не изменяет мутантного генома клеток. Наиболее эффективных результатов клеточной терапии можно добиться при трансплантации стволовых клеток. Они обладают способностью размножаться в недифференцированном состоянии, а другая их часть дифференцируется в клетки патологически измененного органа, улучшая его функцию. Что такое стволовые клетки, где они находятся, каковы их разновидности и функции см. в книге «Биология стволовых клеток и клеточные технологии в 2 т.» под ред. М.А. Пальцева.

Источники стволовых клеток представлены в табл. 10.5.

Таблица 10.5. Типы стволовых клеток, применяемых для лечения наслед ственных болезней

Первым по времени применения и объему проведенных клеточных трансплантаций является костный мозг и полученные при его культивировании гемопоэтические стволовые клетки, а также мультипотентные мезенхимальные стромальные клетки. В конце 60-х годов прошлого века впервые для лечения первичных иммунодефицитов применили трансплантацию костного мозга. В последние годы в качестве источника гемопоэтических стволовых и мезенхимальных стромальных клеток используется и пуповинная кровь.

Печень эмбрионов - хороший источник стволовых клеток печеночной и непеченочной (после культивирования) дифференцировки. Клеточная фракция эмбриональной печени после трансплантации в организм реципиента выполняет функции печени, что особенно важно в экстренных случаях поражения печени.

Поперечно-полосатые мышцы в культуре образуют миобласты, миоциты, мезангиобласты, которые обладают способностью к самовоспроизведению и дифференцировке в обратном направлении в поперечно-полосатые мышечные клетки.

Трансплантация гемопоэтических стволовых клеток применяется как эффективная терапия наследственных болезней обмена, главным образом лизосомных болезней накопления и пероксисомных. Всего в мире сделано около 1000 трансплантаций при более чем 20 болезнях. Лечение трансплантацией гемопоэтических стволовых клеток при

наследственных болезнях обмена основано на выработке недостающих в организме ферментов за счет функционирования донорских клеток. Из всех клинических проколов по более чем 20 болезням только по трем формам получены убедительные результаты, позволяющие рекомендовать трансплантацию таких клеток как метод лечения. Это синдром Гурлер, Х-сцепленная адренолейкодистрофия и болезнь Краббе (глобоидноклеточная лейкодистрофия). Для этих форм отработаны условия кондиционирования, претрансплантационная терапия, строгие показания, возраст детей.

Большой раздел в клеточной терапии занимают болезни крови и кроветворных органов, ассоциированных с недостаточностью продуктов костного мозга. Важнейшим условием является подбор доноров по HLA-антигенам, чтобы снизить реакцию «трансплантат против хозяина». Не останавливаясь на технической стороне клеточной терапии, перечислим болезни, которые уже лечат гемопоэтическими стволовыми клетками. При этом не исключаются другие виды лечения. Трансплантацию гемопоэтических стволовых клеток используют при лечении следующих болезней: анемии Фанкони, первичных иммунодефицитов, гемоглобинопатий. Переливание моноцитарных фракций костного мозга дает худшие результаты из-за большей антигенности зрелых клеток по сравнению с гемопоэтическими стволовыми.

Более 15 лет назад клеточная терапия была применена для лечения наследственных заболеваний костей - ахондроплазии и несовершенного остеогенеза. Трансплантировали мезенхимальные стромальные клетки, полученные из костного мозга. Лечение было направлено на усиление роста костей. И действительно, применение мезенхимальных стромальных клеток давало эффект ускоренного удлинения костей при дистракционном остеогенезе при ахондроплазии и существенное прибавление в росте у больных с несовершенным остеогенезом.

Для клеточной терапии заболеваний нервной системы имеется много источников стволовых клеток: из нервной системы, жировой ткани, костного мозга и др. Мезенхимальные стромальные клетки костного мозга могут дифференцироваться в нейтральные стволовые клетки. Хотя и проводятся многочисленные экспериментальные разработки, обосновываются новые подходы, проверяются новые клинические протоколы лечения больных стволовыми клетками таких сложных по патогенезу болезней, как болезнь Альцгеймера, хорея Гентингтона, болезнь Паркинсона, миопатия Дюшенна, пока одно-

значных результатов лечения не получено. Все клинические протоколы клеточной терапии нервной системы являются первичными проверками на токсичность и биобезопасность.

Эффективность лечения стволовыми клетками, как правило, невысокая, и терапевтический эффект сохраняется лишь первые 6 мес, поэтому клеточная терапия должна рассматриваться как дополнительный, а не основной метод лечения. Важным методом лечения является сочетание клеточной терапии с лекарственной, особенно ферментативной, для наследственных болезней обмена. Впереди еще много работы по доведению первых результатов до эффективных и безопасных методов лечения. Несмотря на многочисленные клинические исследования клеточной терапии, утвержденных протоколов лечения для конкретных нозологических форм еще нет (тип клеток, количество, способ введения клеток, сроки повторного введения).

Генная терапия

Генная терапия путем введения генно-инженерных конструкций в клетки и ткани больного (трансгеноз in vivo) может стимулировать рост ткани, функцию органа. В этом типе терапии создаются функционально способные генетические конструкции (генетический вектор) в лабораторных условиях. Эти конструкции должны включать целевой ген (или его главную часть), вектор, промотор

(рис. 10.6).

Рис. 10.6. Карта генетической конструкции (плазмиды pAng1) с геном ангиогенина. Обозначения: Ang - кДНК гена ангиогенина; PrCMV - немедленно ранний промотор/энхан- сер цитомегаловируса; PrSV40 - ранний промотор/ориджин вируса SV40; BGH polyA - сигнал полиаденилирования гена гормона роста быка; SV40 polyA - поздний сигнал полиаденилирования вируса SV40; neo r - ген устойчивости к неомицину; amp r - ген устойчивости к ампициллину; ori - ориджин репликации (f1 - фага f1; ColE1 - плазмиды ColE1)

Генная терапия в представленном виде испытывалась главным образом для лечения сердечнососудистых заболеваний: ишемической болезни сердца и хронической ишемии нижних конечностей.

Хотя ангиогенез осуществляется целой группой генов (около

12), выбраны два наиболее критичных целевых гена для проверки эффективности генной терапии. При ишемической болезни сердца (в остром и хроническом состояниях) применяли введение гена VEGF (эндотелиального фактора роста сосудов).

Генный препарат на основе плазмидной конструкции, содержащий ген VEGF165 человека, вводится на заключительном этапе операций (аортокоронарного шунтирования, трансмиокардиальной лазерной реваскуляризации, миниинвазивной реваскуляризации миокарда) в зону, нуждающуюся в неоангиогенезе. У всех больных зарегистрировали клиническое улучшение: отмечен переход в более благоприятный класс стенокардии напряжения, снизилась доза применяемых нитропрепаратов; проба с физической нагрузкой выявляла возрастание порога толерантности; все больные отмечали улучшение качества жизни. При сцинтиграфии отмечалось уменьшение общей площади, а также выраженности дефектов накопления радиофармпрепарата по сравнению с дооперационной картиной.

Проведено лечение нескольких тысяч больных с ишемической болезнью сердца на разных стадиях. Процедура введения генетических конструкций в миокард безопасна. Положительный эффект генотерапии отмечается в большинстве клинических исследований, но он небольшой (8-10%).

Терапевтический ангиогенез в лечении критической ишемии нижних конечностей осуществлялся разными авторами с помощью введения в мышцы голени и бедра нативной ДНК, кодирующей белок VEGF, ген FGF (фактора роста фибробластов), рекомбинантные конструкции на основе разных аденовирусов с геном ангиогенина - ANG.

В нашем исследовании пациентам вводили генно-инженерные конструкции с геном ANG путем прямых внутримышечных инъекций в тибиальную группу мышц пораженной конечности троекратно в равных дозах (3х10 9 бляшкообразующих единиц) с интервалом 3 сут. Каждая процедура включала 4-5 прямых внутримышечных инъекций по 0,3-0,5 мл раствора, равномерно распределенных на площади 15-20х5-6 см. Результаты лечения оценивали через 6-24 мес.

В клинических наблюдениях во всех случаях отмечался положительный эффект: увеличился показатель времени (расстояния) безболевой ходьбы, увеличился показатель плечелодыжечного индекса, уменьшились или даже зажили трофические язвы, увеличилась перфузия мышц нижних конечностей.

Данные литературы и наши наблюдения свидетельствуют о том, что позитивный эффект сохраняется в течение 6-18 мес, после чего возникает потребность в повторных инъекциях препарата. Таким образом, генно-инженерные конструкции, содержащие гены ANG и VEGF, способствуют выработке факторов неоангиогенеза и стимулируют рост кровеносных сосудов в ишемизированных тканях. О состоянии, проблемах и перспективах генной терапии см. в одноименной статье А.В. Киселева с соавт. на компакт-диске.

Лечение трансгенными клетками

Лечение трансгенными клетками с целевой генно-инженерной конструкцией может быть названо комбинированной терапией. Для осуществления этого типа клеточно-генной терапии необходимо осуществить введение целевого гена в клетку. Такая комбинация сочетает свойства клеточного вектора, генной функции и эффект клеточной терапии.

Трансгеноз (перенос генетического материала) in vitro направлен на соматические клетки-мишени, заранее выделенные из организма (например, резецированная печень, культура лимфоцитов, костный мозг, культура фибробластов, опухолевые клетки). Для введения ДНК в клетки млекопитающих уже опробованы многие подходы: химические (микропреципитаты фосфата кальция, DEAE-декстран, диметилсульфоксид); слияние клеток (микроклеток, протопластов); физические (микроинъекции, электропорация, лазерная микроинъекция); вирусные (ретровирусы, аденовирусы, аденоассоциированные вирусы). Многие невирусные методы малоэффективны (за исключением электропорации и лазерной микроинъекции). Наиболее эффективными переносчиками ДНК в клетки являются «природные шприцы» - вирусы.

Процедура трансгеноза клеток должна заканчиваться проверкой ее успешности. Трансгеноз можно считать успешным, если не менее 5% всех обработанных клеток будут иметь введенный генетический материал.

Конечная процедура генной терапии через трансгеноз соматических клеток in vitro - это реимплантация трансгенных клетокмишеней. Она может быть органотропной (печеночные клетки вводят через воротную вену) или эктопической (клетки костного мозга вводят через периферическую вену).

Клеточно-генная терапия была принята в клинической практике быстрее, чем можно было ожидать. Варианты ее применения можно показать на примере трех болезней.

Недостаточность ADA. Девочка 4 лет (США) страдала редкой наследственной болезнью - первичным иммунодефицитом (тяжелая комбинированная форма), обусловленным мутацией в гене ADA. Все 4 года девочка жила в стерильном боксе. (Пациенты с этим заболеванием не переносят никаких контактов с любой инфекцией из-за тотального отсутствия иммунитета.)

Лимфоциты больной заранее были отделены от остальных элементов крови, Т-лимфоциты стимулированы к росту. Затем in vitro в них был введен ген ADA с помощью ретровирусного вектора. Приготовленные таким образом «генно-инженерные» лимфоциты были возвращены в кровоток.

Указанное событие произошло 14 сентября 1990 г., и эта дата считается днем рождения реальной генной терапии. С этого года стал выходить журнал «Генная терапия».

Из протокола клинического испытания стало ясно, что, во-первых, лимфоциты пациентов с тяжелым иммунодефицитом могут быть изолированы, выращены в лабораторных условиях, в них можно ввести ген, а затем возвратить в крово-

ток больного. Во-вторых, лечение больной было эффективно. Общее количество лимфоцитов возросло до нормального уровня, а количество ADA-белка в Т-клетках увеличилось до 25% нормы. В-третьих, в течение 6 мес перед очередным курсом лечения число «генно-инженерных» лимфоцитов и ADA-фермента в клетках оставалось постоянным. Из стерильного бокса девочку перевезли домой (рис. 10.7).

Рис. 10.7. Первые две девочки, леченные методом генной терапии по поводу тяжелого комбинированного первичного иммунодефицита, обусловленного недостаточностью аденозиндезаминазы (ADA), примерно через 2,5 года после начала лечения

Выбор болезни для начала использования генотерапии был хорошо продуман. Ген ADA к этому времени был клонирован, имел средние размеры, хорошо встраивался в ретровирусные векторы. Ранее при трансплантации костного мозга при

недостаточности ADA было показано, что ключевую роль в болезни играют Т-лимфоциты. Следовательно, на эти клетки-мишени должна быть направлена генотерапия. Важным моментом стало то, что функционирование иммунной системы возможно при уровне ADA-белка 5-10% контрольного. Наконец, АDА -«генно-инженерные» Т-лимфоциты имели селективное преимущество перед исходными дефектными клетками.

Семейная гиперхолестеринемия. Рецепторы ЛПНП, играющих ключевую роль в обмене холестерина, синтезируются в клетках печени. Соответственно на гепатоциты (клетки-мишени) должна быть направлена генотерапия. Одна попытка такого лечения сделана в США у женщины 29 лет с резко выраженным атеросклерозом венечных артерий. Эффект предыдущего хирургического шунтирования уже сошел на нет. Брат больной умер от такой же болезни, не дожив до 30 лет. Генотерапия больной была проведена в несколько этапов.

Больной была сделана частичная (около 15%) гепатэктомия. Удаленную долю печени промыли раствором коллагеназы для разделения гепатоцитов. Получили около 6 млн гепатоцитов. Затем эти клетки выращивали в 800 культуральных чашках на питательной среде. Во время роста в культуре для включения нормального гена ЛПНП в качестве передающего агента использовали ретровирусный вектор. Трансгенные гепатоциты были собраны и введены пациентке через катетер в воротную вену (чтобы клетки достигли печени). Через несколько месяцев при биопсии печени обнаружили, что в некоторых клетках функционирует новый ген. Содержание ЛПНП в крови упало на 15-30%. Улучшение состояния больной позволило проводить лечение только лекарствами, снижающими уровень холестерина.

Рак. Необычайно быстрый прогресс в изучении генома человека и методов генной инженерии позволяет развивать генную терапию не только для моногенно наследуемых болезней, но и для таких многофакторных болезней, как рак. Генная терапия злокачественных новообразований уже начата, хотя на ее пути много трудностей, обусловленных необходимостью обеспечения селективности, специфичности, чувствительности и безопасности переноса генов. В настоящее время применяется следующая стратегия генотерапии рака: повышение иммуногенности опухоли путем вставки цитокиновых генов, генов, кодирующих главный комплекс гистосовместимости, лимфоцитарных лигандов; направленная доставка (векторирование) опухолевых цитокинов в клетки, которые в

пределах опухоли локально могут реализовать токсические эффекты (например, в лимфоциты, инфильтрующие опухоли); использование опухолеспецифических пролекарственных активаторов, т.е. вставка ферментативно пролекарственно-активирующих генов, сливающихся с промоторными системами, которые реализуются через дифференциально контролируемую (идеально опухолеспецифическую) транскрипцию; введение маркирующих генов, которые могут обеспечивать выявление минимально оставленных после операции или разрастающихся опухолей; искусственная репрессия функций генов путем вставки генов.

Небольшое число попыток генотерапии злокачественных опухолей связано с введением в клетки резецированной опухоли генов ИЛ-2 или ФНО. Затем эти клетки вводят подкожно в область бедра. Через 3 нед удаляют регионарный лимфатический узел (для места введения смеси трансгенных опухолевых клеток). Культивируют Т-лимфоциты, выделенные из этого узла. Кроме того, размножают лимфоциты из опухоли (инфильтрирующие опухоль). Пациенту вводят общую массу лимфоцитов, что обеспечивает иммунную реакцию на опухолевые клетки. Так лечили больных злокачественной меланомой, раком почки, запущенным раком разных органов.

Изменение экспрессии генов как метод лечения

Это направление генной терапии открылось для научных разработок в связи с прогрессом функциональной геномики как части генома человека, другими словами, с увеличением знаний об основах нормальной и патологической экспрессии генов. Изменения экспрессии генов можно достичь путем фармакологической модуляции или РНКинтерференции. На сегодня можно говорить о трех направлениях разработки методов лечения наследственных болезней путем изменения экспрессии генов: повышение экспрессии в гене, определяющим болезнь; повышение экспрессии в гене, не относящимся к болезни; уменьшение экспрессии продукта аномального доминантного гена. - При наследственном ангионевротическом отеке (аутосомнодоминантная болезнь) у больных непредвиденно развивается подслизистый и подкожный невротический отек. Обусловлено это недостаточной выработкой ингибитора эстеразы компонента комплемента С1. Из-за быстрой природы атак отека профилактически назначают лечение синтетическими андрогенами (даназолом). Андрогены значительно увеличивают количество

мРНК ингибитора С1 (возможно в нормальном и мутантном локусах). Частота серьезных приступов у больных резко уменьшается.

Терапия путем фармакологической модуляции экспрессии гена может быть направлена на увеличение экспрессии нормального гена с целью компенсации эффекта мутации в другом гене. Гипометилирование ДНК увеличивает количество фетального гемоглобина у взрослых. Увеличение уровня фетального гемоглобина (α2γ2) вполне адекватно для пациента с серповидноклеточной анемией, поскольку гемоглобин F (фетальный) является нормальным переносчиком кислорода и препятствует полимеризации гемоглобина S. Суть модуляции в следующем - метилирование промотора тормозится приемом аналога цитидина децитабином (5-аза-2"-деоксицитидин), который включается вместо цитидина. Блокада метилирования приводит к увеличению экспрессии гена γ-глобина и доли гемоглобина F в крови. Такая комбинация, очевидно, окажется полезной и для лечения β-талассемии.

Уменьшения экспрессии доминантного гена можно достичь путем РНК-интерференции (информацию о малой интерферирующей РНК см. в гл. 1). При многих наследственных болезнях патологические изменения вызваны токсическими продуктами (белки при болезнях экспансии нестабильных повторов) или снижением вклада нормального белка (аномальный коллаген при несовершенном остеогенезе). Патогенетически ясно, что надо уменьшить объем синтеза мутантного белка без нарушения синтеза белка с нормального аллеля. Эта цель может быть достигнута РНК-интерференцией. Цепи коротких РНК связываются с целевой РНК и вызывают их распад. Ориентируясь на быстрый прогресс в изучении малых РНК (малых интерферирующих РНК), можно надеяться на большой потенциал этой технологии для лечения наследственных болезней, хотя РНКинтерференционная терапия находится еще на раннем этапе развития.

Риски клеточной и генной терапии

Как видно из приведенных выше примеров, эра генотерапии человека уже началась. Определены принципы и методические подходы генотерапии, отобраны болезни, потенциально подлежащие этому

лечению. Работа продолжается одновременно в разных странах и в различных направлениях. Уже очевидно, что генотерапия будет применяться для лечения не только наследственных и сердечнососудистых болезней, но и злокачественных опухолей и хронических вирусных инфекций.

Вместе с тем необходимо отметить, что применять эти методы надо крайне осторожно (это относится именно к применению, а не к разработке!). Это особенно важно при лечении наследственных болезней (особенно расширенном), даже если будут еще более решительные прорывы в способах доставки генов в клетки-мишени. Необходимо внимательно наблюдать за отдельными результатами лечения и строго соблюдать этические и деонтологические принципы.

Три типа рисков клеточной и генной терапии уже обозначились.

Неблагоприятный ответ на вектор или комбинацию вектор/ болезнь. По крайней мере, один пациент погиб из-за патологического иммунного ответа на введенный ген с аденовирусным вектором. Вывод из этого случая уже сделан - при выборе вектора необходимо учитывать патофизиологические характеристики наследственного заболевания.

Инсерционный мутагенез, приводящий к злокачественным новообразованиям. Существует вероятность, что переданные клетка или ген (неважно - в чистом виде или с трансгенной клеткой) может активизировать протоонкогены или нарушить супрессоры опухолевого роста. Непредвиденный ранее механизм онкогенеза был обнаружен у некоторых пациентов после генотерапии Х-сцепленного комбинированного иммунодефицита. Перенос гена у этих больных содействовал развитию лимфопролиферативного заболевания.

Онкологический риск при клеточной терапии в связи с генетической нестабильностью клеточных трансплантатов, в культуре которых нередко возникают аномальные хромосомные клоны.

Все типы рисков могут быть сведены к минимуму при правильной проверке методов на безопасность.

ЗАКЛЮЧЕНИЕ

Итак, лечение наследственных болезней - необычайно трудная задача, не всегда эффективно решаемая. Несмотря на это, оно должно быть постоянным и настойчивым. Нестойкость, а часто и недо-

статочная выраженность эффектов терапии не означают отказа от ее постоянного проведения не только с клинической точки зрения, но и по деонтологическим соображениям. При этом следует принимать во внимание две особенности лечения наследственных болезней:

Необходимость долговременного контроля лечения;

Исходная диагностическая точность до назначения лечения в связи с генетической гетерогенностью наследственных болезней.

КЛЮЧЕВЫЕ СЛОВА И ПОНЯТИЯ

Виды симптоматического лечения Генная терапия (общая схема)

Генная терапия злокачественных новообразований Генная терапия моногенных болезней (примеры) Евфеника

Концепция вырождающихся семей Коррекция обмена на уровне продукта Коррекция обмена на уровне субстрата Клеточная терапия Стволовые клетки Негативная евгеника

Примеры лекарственного симптоматического лечения

Принципы патогенетического лечения

Трансгеноз

Ферментотерапия наследственных болезней Хирургические методы лечения

Биология стволовых клеток и клеточные технологии: в 2 т. / под ред. М.А. Пальцева. - М.: Медицина, 2009. - 728 с.

Долгих М.С. Возможности генной терапии, ее методы, объекты и перспективы // Успехи современной биологии. - Т. 124. - № 2. -

С. 123-143.

Марахонов А.В., Баранова А.В., Скоблов М.Ю. РНК-интерференция: фундаментальные и прикладные аспекты // Медицинская генетика. - 2008. - № 10. - С. 44-55.

Генетик – это врач, который занимается изучением генетических особенностей человеческого организма, а также профилактикой и лечением наследственных заболеваний.

Общие сведения

Генетика – это наука, которая изучает законы наследственности и изменчивости.

Изменчивость признаков и закономерности их наследования у человека изучает генетика человека – раздел генетики, который в свою очередь подразделяется на:

  • Антропогенетику – изучает наследование и изменчивость нормальных признаков организма человека.
  • Медицинскую генетику, которая занимается изучением, выявлением, профилактикой и лечением наследственных (передающихся генетическим путем) заболеваний человека. Также эта отрасль медицины занимается изучением зависимости различных заболеваний от генетических факторов и влияния окружающей среды.

Поскольку генетические нарушения не всегда передаются по наследству (соматические генные мутации могут возникать под влиянием окружающей среды и не передаваться потомкам), основной задачей генетика является выявление причины патологии и предупреждение ее дальнейшего развития.

Кроме того, врач-генетик:

  • помогает другим узким специалистам в постановке точного диагноза;
  • определяет тип наследования в конкретной семье на примере трех поколений и рассчитывает вероятность возникновения определенного заболевания у будущего потомства;
  • определяет эффективный способ профилактики данного заболевания;
  • проводит специфическую диагностику (определение хромосомного набора, ДНК-диагностика и др.).

После изучения семейного анамнеза, особенностей развития и с учетом проведенных обследований генетик прогнозирует риск рождения ребенка с генетической патологией или выявляет генетическую природу заболевания пациента.

Какие органы лечит генетик

Врач-генетик не занимается лечением конкретных органов, он выявляет генетическую природу заболевания.

Какие заболевания лечит генетик

К сфере деятельности генетика относится широкий спектр заболеваний (в настоящее время известно около 3000 заболеваний, которые передаются наследственным путем). Часть этих заболеваний проявляется сразу после рождения (обычно это тяжелые патологии), а часть – в течение жизни пациента.

К наиболее распространенным генетическим патологиям относятся:

  • Адреногенитальный синдром. При этой врожденной дисфункции коры надпочечников происходит нарушение синтеза гормонов и возникает избыток андрогенов (стероидных мужских половых гормонов). При вирильной форме заболевания в результате нарушенного внутриутробного развития у девочек выявляется неправильное строение половых органов, при сольтеряющей форме нарушается водно-солевой баланс, а гипертоническая форма протекает с резким повышением АД.
  • Миодистрофия Дюшенна-Беккера. Выявляется преимущественно у мальчиков, проявляется прогрессирующей слабостью мышц, кардиологическими проблемами и снижением интеллекта с летальным исходом на 2-3 десятилетии жизни.
  • Миотоническая дистрофия (болезнь Штейнерта), при которой генетическая патология приводит к медленно развивающейся дисфункции многих органов (при рождении чаще всего не проявляется, но у ребенка наблюдается характерный внешний вид). Патология затрагивает поперечнополосатые мышцы и гладкую мускулатуру ЖКТ, приводит к нарушению функции сердца, иммунодефициту, множественным эндокринопатиям, катаракте и снижению интеллекта.
  • Муковисцидоз – системное заболевание, при котором поражаются железы внутренней секреции и происходит нарушение функций органов дыхания. В первые дни жизни проявляется мекониевой непроходимостью, впоследствии может протекать в кишечной или легочной форме.
  • Нейрофиброматоз 1-го типа – генетическая патология, провоцирующая развитие доброкачественных опухолей (нейрофибром). Плексиморфные нейрофибромы вызывают поражения нервов, поэтому могут присутствовать хронические боли, онемение и паралич мышц. Также наблюдается сколиоз, снижение тонуса мышц, эндокринные и когнитивные нарушения, возможны эпилептические припадки.
  • Синдром Вольфа-Хиршхорна, при котором нарушается психомоторное, физиологическое и умственное развитие. Дети рождаются с низким весом, умеренно выраженной микроцефалией, аномальным строением ушных раковин, гипотонией мышц, низким иммунитетом и другими патологиями. Также возможно наличие пороков почек или сердца.
  • Семейная гиперхолестеринемия, при которой генетическая мутация вызывает значительное повышение в крови уровня липопротеинов низкой плотности («плохого» холестерина). Заболевание приводит к раннему развитию атеросклероза и внезапной смерти в результате инсульта или инфаркта (риск их развития зависит не только от уровня холестерина, но и от образа жизни).
  • Синдром Дауна — геномная патология, при которой вместо 46 хромосом присутствует 47 (у 21 хромосомы три копии), либо 21 хромосома перенесена на другие хромосомы (самым редким является мозаичный вариант патологии). Для данного синдрома характерны наличие эпикантуса, укороченный череп, гипотония мышц и другие внешние признаки. Когнитивное развитие детей с таким синдромом варьируется от умственной отсталости с наличием способности к обучению до идиотии.
  • Синдром дисомии по Y-хромосоме, который встречается только у мужчин и не вызывает серьезных физических отклонений. Носители дополнительной Y-хромосомы отличаются быстрым ростом в детском возрасте и высоким ростом во взрослом возрасте, незначительным нарушением координации движений, могут иметь трудности с обучением при нормальном уровне IQ и поведенческими нарушениями.
  • Синдром Клайнфелтера, клинические проявления которого можно обнаружить у мальчиков только после полового созревания. Носители характерного для синдрома мозаичного сочетания хромосом характеризуются высоким ростом, наличием длинных ног и высокой талии, а также андрогенным дефицитом, который приводит к бесплодию и нарушению половых функций. Возможны затруднения при выражении своих мыслей и при учебе, присутствует склонность к ожирению, сахарному диабету, развитию аутоиммунных заболеваний, остеопорозу и мышечной слабости.

Генетик также занимается лечением синдрома:

  • Марфана;
  • Патау;
  • трипло-Х (трисомии по Х-хромосоме);
  • частичной трисомии по короткому плечу хромосомы 9;
  • Мартина-Белл;
  • Шерешевского-Тернера;
  • Эдвардса;
  • Элерса-Данлоса и др.

К врачу-генетику обращаются при фенилкетонурии, гемофилии, наличии микроцитогенетических синдромов и т.д.

Когда необходимо обращаться к генетику

В связи с большим количеством заболеваний, которые передаются генетически, консультация генетика рекомендуется всем будущим родителям на этапе подготовки к беременности.

В обязательном порядке обращаться к генетику при планировании беременности необходимо людям, у которых:

  • была выявлена склонность к какому-либо генетическому заболеванию, даже если это заболевание клинически не проявляется;
  • уже есть ребенок с генетическими отклонениями;
  • предыдущая беременность окончилась выкидышем;
  • в семье были случаи рождения нежизнеспособных детей;
  • есть кровные связи (пара является близкими родственниками);
  • первая беременность приходится на возраст после 35 лет для женщины или если отцу ребенка больше 40 лет (с возрастом увеличивается риск появления мутации de novo, которая возникает впервые только у одного члена семьи).

Также консультация генетика нужна семейным парам, для которых важен пол ребенка (при гемофилии и т.д.), и женщинам, которые незадолго до беременности подвергались воздействию тератогенов (принимали наркотики или сильнодействующие медицинские препараты).

Как подготовиться к приему

На прием к врачу необходимо взять медицинские карты будущих родителей. Кроме того, перед посещением генетика следует:

  • выяснить, наблюдались ли в семье многократные выкидыши;
  • были ли случаи рождения детей с пороками развития или случаи мертворожденности;
  • записать все заболевания, которые были выявлены у родственников.

Этапы консультации

Во время медико-генетической консультации генетик:

  • в процессе беседы уточняет цель консультации и данные семейного анамнеза;
  • назначает необходимые анализы;
  • с учетом данных проведенных исследований путем расчетов определяет степень вероятности появления наследственной патологии для конкретной семьи;
  • дает рекомендации обратившейся семье (при риске от 6 до 20% рекомендуется пренатальная диагностика, при риске выше 20% эта диагностика обязательна).

Диагностика

Для диагностики наследственных заболеваний применяют:

  • генеалогический метод, который используют при наличии данных минимум о трех поколениях родственников;
  • цитогенетическую диагностику, при которой для распознавания отдельных хромосом применяют дифференциальное окрашивание клеток биологического материала (позволяет выявить неоднородность хромосомной структуры);
  • молекулярно-генетические методы (метод ПЦР, секвенирования, получения праймеров известных ДНК, клонирования ДНК и др.), при использовании которых анализируют конкретные последовательности ДНК или РНК и выявляют мутации в гене или определяют нуклеотидную последовательность генов;
  • анализ сцепления генов — генетическое картирование, при котором прослеживается совместное наследование определенных генов или генетических маркеров в ряду поколений;
  • методы генетики соматических клеток (используют простое культивирование, клонирование, гибридизацию и селекцию);
  • синдромологический метод, при котором в результате детального визуального обследования выявляют признаки наличия определенных синдромов (отклонения от нормы по весу и росту, особенности строения конечностей, наличие аномалий развития лица и т.д.).

Кроме того, для подтверждения диагноза дополнительно назначают общеклинические, биохимические и иммунологические исследования. Возможно также проведение параклинического обследования, которое включает МРТ, ЭЭГ, УЗИ сосудов головного мозга и т.д.

При наличии наследственных заболеваний те же исследования проводятся и у других членов семьи.

Для выявления генетических болезней при беременности проводят пренатальную диагностику, которая включает:

  • биопсию хориона, при которой на 7-9 неделе беременности исследуются ткани хориальной оболочки плода;
  • амниоцентез, при котором на 16-20 неделе исследуется околоплодная жидкость;
  • кордоцентез, при котором после 18 недели исследуют полученную из пуповины кровь плода.

Также применяются скрининговые методы (тройной тест, фетальную эхокардиографию, определение уровня АФП).

Лечение

Лечение генетических заболеваний направлено на:

  • Устранение причины заболевания при помощи методов генной коррекции (поврежденная часть ДНК выделяется, клонируется и внедряется в организм). В настоящее время разработаны методы генной коррекции для лечения только некоторых генетических заболеваний.
  • Изменение физиологических и биохимических процессов в организме, которые возникают под влиянием патологического генома (воздействие на механизм развития заболевания).
  • Устранение симптомов заболевания (могут применяться противосудорожные, обезболивающие или успокаивающие препараты и т.д.).

Симптоматическая терапия, которая применяется при любых болезнях, может сочетаться с другими методами лечения.

Врач-генетик – это медицинский специалист, в компетенции которого находятся выявление, терапия и профилактика генетических, то есть наследственных патологий. Также генетик занимается диагностикой болезней, к которым у человека есть наследственная предрасположенность.

Проще говоря, в сферу профессиональных интересов генетика входят все патологии, нарушения, заболевания, передающиеся по наследству из поколения в поколение или через поколение от родителей детям, от бабушек и дедушек внукам и т.д.

Обычно больной не может установить у себя наличие генетических заболеваний самостоятельно. А их симптомы могут быть неочевидны. Поэтому к генетику нужно обращаться людям, которые знают или предполагают, что в их семье уже были случаи наследственных патологий. А в большинстве случаев к генетику пациента направляет другой узкоспециализированный специалист, который подозревает, что конкретное заболевание пациента связано с наследственностью. Также к генетику желательно обратиться при планировании беременности, особенно если один из будущих родителей достиг возраста 35 лет.

Врач генетик занимается хромосомными, генными патологиями, а также многофакторными заболеваниями. Можно перечислить те аномалии и нарушения, которые в практике специалиста случаются наиболее часто:

Хромосомные

Патологии и заболевания, которые возникают вследствие мутации хромосом у взрослого человека или зародыша, плода во время беременности:

  • Синдром Дауна, синдром Патау – заболевания возникают в результате того, что в момент оплодотворения яйцеклетки в геноме будущего ребенка появляется лишняя хромосома.
  • Синдром Клайнфельтера – чисто мужское заболевание, делающее мужчину бесплодным.
  • Синдром Шерешевского-Тернера – хромосомное нарушение, проявляющееся физическими аномалиями.

Генные

Отклонения, которые проявляются в расстройствах метаболизма. Вследствие этого у пациента возникают дисфункции определенных органов, нарушения физического развития:

  • Гемофилия – недостаточная выработка белков, отвечающих за свертываемость крови. Данная патология характерна только для мужчин, женщины же являются носителями деструктивного гена.
  • Талассемия – недостаточный синтез гемоглобина.
  • Ихтиоз – нарушения белкового и липидного обмена, в результате которых процесс ороговения кожного покрова нарушается. На теле больного возникают толстые чешуйки.
  • Муковисцидоз – это аномалия, вследствие которой нарушается функциональность органов, вырабатывающих слизь (слюнные и половые железы, легкие).
  • Синдром Марфана – нарушение синтеза вещества, которое отвечает за нормальные качественные характеристики соединительной ткани. Данная аномалия вызывает проблемы с опорно-двигательным аппаратом, сердечно-сосудистой системой, нервной системой.

Многофакторные

Заболевания, в формировании которых генные нарушения играют лишь частичную роль наряду с другими патологическими факторами. Предрасположенность к болезни у человека появляется еще во время внутриутробного развития. А вот возникнет ли заболевание или никогда не проявится, зависит от множества внешних обстоятельств:

  • Плоскостопие.
  • Сахарный диабет.
  • Сердечно-сосудистые патологии.
  • Заячья губа.
  • Язва желудка и некоторые другие заболевания ЖКТ.
  • Бронхиальная астма и другие иммунные, аутоиммунные патологии.
  • Шизофрения и другие психические болезни и расстройства.

Полный список всех болезней, которые находятся в компетенции врача, очень обширен, и насчитывает около 1500-3000 разновидностей генных патологий.

Когда обращаться за консультацией генетика

Основное показание для обращения к врачу-генетику, это планирование беременности. Особенно консультация специалиста нужна таким парам:

  1. Пара, которая не может зачать ребенка на протяжение более чем полугода после начала попыток.
  2. Если у женщины в анамнезе есть как минимум две невыношенные беременности. В том числе в случае выкидышей или мертворожденности плода. А также если у близких родственников женщины были случаи частых самопроизвольных абортов, рождения мертвого плода.
  3. Если в семейный анамнез одного или обоих родителей отягощен известными случаями наследственных, генетических, тяжелых хронических заболеваний. В том числе, если в семье уже есть ребенок с какими-либо генетическими заболеваниями.
  4. В случае если возраст будущей матери более 35 лет. Если отец старше 40 также не лишним будет проконсультироваться с врачом-генетиком.
  5. В случае заключения брака между близкими родственниками (полнородные и неполнородные кровные родственники в одном поколении, в соседних поколениях или через поколение).
  6. При планировании искусственного зачатия – ИКСИ или ЭКО.
  7. Если во время беременности были зафиксированы любые патологии развития плода или ход беременности дает повод подозревать хромосомные нарушения.
  8. Если на развитие плода теоретически могли повлиять соматические или психические заболевания матери, прием медикаментов, курение, употребление алкоголя или наркотических, психотропных препаратов.
  9. Если во время любых исследований до или во время беременности были выявлены отклонения в биохимических маркерах.

Так как планирование зачатия ребенка в детском и подростковом возрасте происходит крайне редко, проконсультироваться с генетиком нужно при наступившей беременности у юной девушки (15-19 лет) или девочки (до 15 лет).

Ребенку консультация генетика нужна в случае возникновения у него следующих симптомов:

  1. Нарушение психоречевого и/или физического развития.
  2. Задержка психического развития.
  3. Врожденные пороки или аутистические аномалии.
  4. Возникшие на протяжении жизни физические патологии, аномалии.

Консультация врача-генетика позволит получить ответ на следующие вопросы:

  • Есть ли у обследуемого пациента генетические отклонения, нарушения, патологии, аномалии, заболевания.
  • Является ли обследуемый носителем наследственной болезни.
  • Можно ли, а если можно, то как предупредить рождение больного потомства.
  • Можно ли в данной ситуации планировать беременность или сохранять уже наступившую.
  • Какую помощь можно оказать больному, в том числе ребенку с генетическим заболеванием и где ее можно получить.
  • Как избежать рецидива заболевания в будущем.

Важно! В компетенции генетика установление материнства или отцовства, биологического родства или отсутствие такового. Специалист также может помочь в составлении семейного древа.

Как проходит прием у генетика

Подготовка к приему у специалиста состоит из нескольких пунктов:

  1. Нужно собрать как можно больше сведений о наличии в своей семье и семье мужа/супруги хронических или наследственных заболеваний.
  2. Если на руках есть медицинская документация – история болезни, истории болезни близких родственников, медицинские заключения, результаты исследований – все это подготовить и взять с собой.
  3. Накануне не принимать никаких медицинских препаратов. Или поставить врача в известность о том, что вы принимаете те или иные медикаменты, ведь это может отразиться на результатах исследований.

Важно! Нужно понимать, что генетик может диагностировать то или иное наследственное заболевание или патологию, но знать симптомы всех существующих болезней он не может. Поэтому генетик часто направляет пациента к другим специалистам – невропатологу, ортопеду и другим для того, чтобы они распознали признаки и подтвердили наличие многофакторных заболеваний. Пациент должен быть готов к обследованию не только у генетика, но и одного или нескольких других врачей.

Консультация генетика включает 2 последовательных этапа:

  1. Дифференциальная диагностика и постановка или подтверждение диагноза.
  2. Специалист объясняет пациенту природу выявленной патологии, прогнозирует насколько возможно избавиться от заболевания или, по крайней мере, снизить интенсивность симптоматики. А также дает прогноз состояния здоровья у потомства пациента.

В случае если к врачу обратилась пара, планирующая беременность или уже ожидающая ребенка, врач:

  • Информирует родителей о наличии или отсутствии у плода генетических заболеваний или вероятности их возникновения в случае зачатия.
  • Рассказывает о тяжести и последствиях таких патологий, рисках для здоровья ребенка и/или родителей, вероятной продолжительности жизни больного малыша.

Также врач дает рекомендации относительно сохранения или прерывания беременности. Но решение о том, сохранять ли беременность принимают сами родители. Заключение врача может стать основанием для проведения аборта на поздних сроках.

На первом этапе консультации врач организует следующие мероприятия:

  1. Сбор анамнеза, в том числе проведение устной беседы на предмет установления генетических патологий или факторов, которые могли способствовать их появлению.
  2. Внешний осмотр пациента (при необходимости).
  3. Направление больного на дообследование к другим узкоспециализированным врачам.
  4. Назначение исследований. Анализ их результатов и постановка точного диагноза.

В этом видео врач-генетик рассказывает об важности генетики в современном мире:

Методы диагностики, которые применяются врачом-генетиком

Во время беременности или в период ее планирования врач может назначить проведение таких видов исследований:

  • Сбор информации о патологиях не менее 3 поколений близких родственников пары при помощи генеалогического метода.
  • Ультразвуковое исследование плода на предмет выявления патологий развития.
  • HLA-тест или определение генетической совместимости супругов.
  • Изучение возможных генетических аномалий эмбрионов, которые получены методом ЭКО. Исследование проводится перед имплантацией эмбрионов в матку женщины.
  • Комбинированный неинвазивный скрининг маркеров будущей матери и плода после зачатия.
  • В некоторых редких случаях проводится инвазивный скрининг плаценты, околоплодной жидкости, плода (амниоцентез, плацентоцентез, кордоцентез, фетоскопия).
  • Биохимический скрининг, который позволяет выявить хромосомные отклонения у плода.

Скрининг новорожденных и детей старшего возраста проводится по показаниям специалиста. В случае обнаружения болезни процедуру проводят повторно, после чего назначают лечение или реабилитацию.

Инвазивные исследования травматичны как для матери, так и для ребенка, но иногда без них просто нельзя обойтись. Показания для их проведения следующие:

  • Абсолютные – отягощенная наследственность, наличие наследственных патологий у отца или матери плода. А также наличие в семье ребенка с генетическими отклонениями, плохие результаты стандартных обследований во время беременности, возраст беременной старше 35 лет.
  • Относительные – сложное течение беременности, тяжелые соматические, в частности, эндокринные заболевания у женщины (диабет), инфекции на ранних сроках беременности. А также прохождение беременной рентгена, прием тератогенных (стрептомицин, тетрациклин, литий, диазепам, имипрамин, нортриптилин, аспирин и другие) или мутагенных медикаментов.

Для проведения инвазивных исследований у беременной существуют и противопоказания:

  • Кожные инфекции в области живота и матки.
  • Острая форма любого заболевания или обострение хронической формы.
  • Высокая температура у женщины или просто неудовлетворительное состояние здоровья, недомогание.
  • Угроза прерывания беременности, патологии матки или плаценты.

Методы лечения и профилактики, которые может назначить врач-генетик

Методы и способы терапии генетических, наследственных заболеваний зависят от вида патологии, клинической картины, возраста пациента и симптоматики. Однако все их можно условно обобщить, классифицировать, так сказать, по принципу действия:

Паллиативное и патогенетическое лечение

Воздействие на симптомы и механизмы развития болезни. Такие методы терапии предполагают облегчение состояния и улучшение здоровья пациента, но генетическая патология остается, и будет передаваться потомству:

  • Диетотерапия – обеспечивает поступление в организм веществ, которые самим организмом вырабатываются в недостаточном количестве. Помогает снимать тяжелые симптомы некоторых заболеваний.
  • Медикаментозная терапия или введение в организм недостающего фактора – ферментов, белков и т.д., переливание крови. А также назначение обезболивающих, противосудорожных, антигистаминных и других препаратов.
  • Хирургическое лечение – удаление или пересадка органов, коррекция повреждений, пластические операции.

Евгенические мероприятия

Заключаются в компенсации естественных недостатков пациента через фенотип (совокупность индивидуальных биологических свойств и признаков конкретного организма). Включают симптоматическую, патогенетическую терапию, лечение адаптивной средой. На сегодняшний день данный метод также не позволяет полностью устранить наследственные дефекты или уменьшить количество мутировавших ДНК.

Этиотропное лечение

Воздействие на причину патологии, кардинальное и полное исправление аномалий и остановка передачи заболевания потомству. В настоящее время методики такой терапии еще не разработаны. Ведутся работы в области генной инженерии.

К методам профилактики возникновения и передачи генетических заболеваний относят медико-генетическое консультирование, пренатальную диагностику и диспансеризацию.

Где найти хорошего врача-генетика

Врач-генетик это востребованный специалист, но найти его в штате обычной поликлиники практически невозможно. Также редко можно встретить кабинет генетика в помещении женской консультации или в районной поликлинике. Однако к выбору этого специалиста нужно подойти максимально ответственно. Ведь именно от его компетенции и опыта зависти здоровье человека, его семьи и будущих детей супружеской пары.

Наиболее квалифицированные специалисты генетики работают в частных поликлинических медицинских и пренатальных центрах. Но в таких заведениях прием у врача-генетика и других докторов будет платным, как и проведение исследовательских работ. Альтернативный вариант – обратиться в специализированное государственное мед. учреждение, к примеру, в Медико-генетический научный центр.

Врач-генетик – это специалист по широкому спектру генетических и наследственных заболеваний. Он помогает выявить нарушения на генетическом уровне у взрослых пациентов, а также у детей и плода во время беременности. Методов диагностики, используемых генетиком, существует достаточно много. Способы лечения генетических отклонений на данный момент ограничиваются симптоматическими и патогенетическими, но не этиологическими методиками.

Loading...Loading...