О2 вид химической. Кислород: химические свойства элемента

    Атомный номер (Z): 8

    Группа, группа периодов: 16 (халькогены), период 2

    Блок: п-блок

    Стандартный атомный вес (Ar):

    Обычный: 15,999

    Конфигурация электронов : 2s2 2p4

    Количество электронов на оболочку: 2, 6

    Фаза: газ

    Точка плавления: 54,36 К (-218,79 ° С, -361,82 ° F)

    Точка кипения: 90,188 К (-182,962 ° С, -297,322 ° F)

    Плотность: 1,429 г / л

    В жидком состоянии: 1,141 г / см3

    Тройная точка: 54.361 К, 0.1463 кПа

    Критическая точка: 154.581 К, 5.043 МПа

    Теплота плавления: (O2) 0,444 кДж / моль

    Теплота испарения: (O2) 6,82 кДж / моль

    Молярная теплоемкость: (O2) 29,378 Дж / (моль · К)

Кислород представляет собой химический элемент с символом O и атомным номером 8. Он является членом группы халькогенов на периодической таблице и представляет собой высокореактивный неметалл и окислитель, который легко образует оксиды с большинством элементов, а также с другими соединениями. По массе, кислород является третьим элементом во Вселенной после водорода и гелия. При стандартной температуре и давлении, два атома этого элемента связываются с образованием дикислорода, двухатомного газа без цвета и без запаха с формулой O2. Кислород представляет собой важную часть атмосферы, а двухатомный кислородный газ составляет 20,8% атмосферы Земли. В качестве соединений, включающих оксиды, элемент составляет почти половину земной коры. Диоксид используется в клеточном дыхании, и многие основные классы органических молекул в живых организмах содержат кислород, включая белки, нуклеиновые кислоты, углеводы и жиры, как и основные составляющие неорганические соединения оболочек животных, зубы и кости. Основная масса живых организмов содержат кислород как компонент воды, основной составляющей форм жизни. И наоборот, запасы кислорода постоянно пополняются в ходе фотосинтеза, в котором используется энергия солнечного света для производства кислорода из воды и двуокиси углерода. Кислород слишком химически реактивен, чтобы оставаться свободным элементом в воздухе, при отсутствии постоянного пополнения благодаря фотосинтетическому действию живых организмов. Другая форма (аллотроп) кислорода, озон (O3), является сильным поглотителем ультрафиолетового излучения спектра B, и высотный озоновый слой помогает защитить биосферу Земли от ультрафиолетового излучения. Но озон является загрязнителем вблизи поверхности Земли, где он является побочным продуктом смога. Кислород был открыт независимо Карлом Вильгельмом Шееле в Упсале в 1773 году или ранее и Джозефом Пристли в Уилтшире в 1774 году, но Пристли часто уделяют приоритетное внимание, потому что его работа была опубликована первой. Название «кислород» было придумано в 1777 году Антуаном Лавуазье, чьи эксперименты с кислородом помогли дискредитировать тогдашнюю популярную теорию горения и коррозии флогистона. Название происходит от греческих корней ὀξύς oxys, «кислый», буквально «острый», что говорит о кислом вкусе кислот и -γενής -genes, «производитель», буквально «родитель», потому что в те времена ошибочно считалось, что для создания всех кислот требуется кислород. Общее использование кислорода включает отопление жилых помещений, двигатели внутреннего сгорания, производство стали, пластмасс и текстиля, пайка, сварка и резка стали и других металлов, ракетное топливо, кислородная терапия и системы поддержки жизни на самолетах, подводных лодках, космических полетах и дайвинге.

История

Ранние эксперименты

Один из первых известных экспериментов по взаимосвязи между сжиганием и воздухом был проведен греческим писателем II века до н.э. по механике, Филоном из Византии. В своей работе «Pneumatica», Филон отметил, что переворачивание сосуда над горящей свечой и окружение шейки сосуда водой приводит к тому, что в шейку проникает вода. Филон ошибочно предположил, что части воздуха в сосуде были превращены в классический элемент огонь и, таким образом, смогли проникнуть через поры в стекле. Много веков спустя, Леонардо да Винчи, основываясь на работе Филона, отмечал, что во время горения и дыхания потребляется часть воздуха. В конце 17-го века Роберт Бойл доказал, что для горения необходим воздух. Английский химик Джон Мейоу (1641-1679) модернизировал эту работу, показав, что огню для горения требуется только часть воздуха, которую он назвал spiritus nitroaereus. В одном из экспериментов он обнаружил, что помещение мыши или свечи в закрытый контейнер над водой заставляло воду подниматься и заменять одиннадцатый объем воздуха перед тушением свечи (или смертью мыши). Отсюда он предположил, что нитроарий потребляется как при дыхании, так и при сжигании. Мейоу отметил, что при нагревании вес сурьмы увеличивается, и предполагается, что с ней нужно сочетать нитроарий. Мейоу также считал, что легкие отделяют нитроарий от воздуха и пропускают его в кровь, а животное тепло и мышечное движение являются результатом реакции нитроария с некоторыми веществами в организме. Отчеты об этих и других экспериментах и идеях были опубликованы в 1668 году в его труде «Tractatus» в тракте «De respiratione».

Теория флогистона

Ученые, которые в своих экспериментах производили кислород, включают Роберта Гука, Оле Борча, Михаила Ломоносова и Пьера Байена, но никто из них не считал его химическим элементом . Возможно, это отчасти объясняется преобладанием философии горения и коррозии, называемой теорией флогистона, которая была тогда предпочтительным объяснением этих процессов. Согласно теории флогистона, основанной в 1667 году немецким алхимиком Дж. Бехером и модифицированная химиком Георгом Эрнстом Шталем к 1731 году, все горючие материалы состоят из двух частей. Одна часть, называемая флогистоном, испускается при сжигании вещества, содержащего ее, а связанная часть считалась ее истинной формой. Считалось, что высоко горючие материалы, которые оставляют мало остатков, такие как дерево или уголь, в основном, состоят из флогистона; негорючие вещества, которые подвергаются коррозии, например, железо, содержат очень мало флогистона. Воздух не играл роли в теории флогистона, и не проводились какие-либо начальные количественные эксперименты для проверки этой идеи; вместо этого, теория основывалась на наблюдениях о том, что происходит, когда что-то горит, что наиболее распространенные объекты становятся светлее и что что-то теряют в этом процессе.

Открытие кислорода

Кислород был впервые открыт шведским фармацевтом Карлом Вильгельмом Шееле. Он производил кислородный газ, нагревая оксид ртути и различные нитраты в 1771-1772 годах. Шееле назвал этот газ «воздухом огня», потому что он был единственным известным сторонником теории горения, и написал отчет об этом открытии в рукописи, которую он назвал «Трактат о воздухе и огне», который он отправил своему издателю в 1775 году. Этот документ был опубликован в 1777 году. Тем временем, 1 августа 1774 года, в эксперименте, проведенном британским священнослужителем Джозефом Пристли, солнечный свет был сфокусирован на ртутном оксиде (HgO) внутри стеклянной трубки, что высвобождало газ, который он назвал «дефлогистонированным воздухом». Он отметил, что в газе свечи горели ярче, и что мышь была более активной и жила дольше, вдыхая его. После того, как он сам подышал этим газом, он писал: «ощущение этого газа в моих легких не отличалось от ощущения воздуха, но мне казалось, что моя грудь чувствовала себя очень легкой, что продолжалось в течение некоторого времени после этого». Пристли опубликовал свои открытия в 1775 году в статье под названием «Отчет о дальнейших открытиях о воздухе», которая была включена во второй том его книги под названием «Эксперименты и наблюдения за различными видами воздуха» Поскольку он первым опубликовал свои выводы, Пристли обычно считается первооткрывателем кислорода. Французский химик Антуан Лоран Лавуазье позже утверждал, что обнаружил новое вещество самостоятельно. Пристли посетил Лавуазье в октябре 1774 года и рассказал ему о своем эксперименте и о том, как он высвободил новый газ. Шееле также отправил письмо Лавуазье 30 сентября 1774 года, в котором описывалось его открытие неизвестного ранее вещества, но Лавуазье не признал получение этого письма (копия письма была найдена в вещах Шееле после его смерти).

Вклад Лавуазье

Лавуазье произвел первые адекватные количественные эксперименты по окислению и дал первое правильное объяснение того, как работает сжигание. Он использовал эти и подобные эксперименты, начиная с 1774 года, чтобы дискредитировать теорию флогистона и доказать, что вещество, обнаруженное Пристли и Шееле, было химическим элементом. В одном из экспериментов, Лавуазье отметил, что не наблюдалось общего увеличения веса при нагревании олова и воздуха в закрытом контейнере. Он отметил, что воздух «ворвался внутрь контейнера», когда он открыл его, указывая, что часть захваченного воздуха была уничтожена. Он также отметил, что олово увеличилось в весе, и это увеличение было таким же, как вес воздуха, который «вырвался наружу». Этот и другие эксперименты по сжиганию были задокументированы в его книге «Sur la combustion en général», которая была опубликована в 1777 году. В этой работе он доказал, что воздух представляет собой смесь двух газов; «жизненно важного воздуха», который необходим для горения и дыхания, и азота (греч. Ἄζωτον «безжизненный»). Лавуазье переименовал «жизненный воздух» в кислород в 1777 году, из греческих корней ὀξύς (oxys) (кислотный, от вкуса кислот) и -γενής (-genēs) (производитель, буквально «порождающий»), потому что он ошибочно полагал, что кислород является составной частью всех кислот. Химики (такие как сэр Хамфри Дэви в 1812 году), в конечном итоге, определили, что Лавуазье ошибался в этом отношении (водород образует основу для кислотной химии), но к тому времени это название слишком хорошо прижилось. Слово вошло в английский язык, несмотря на сопротивление английских ученых и тот факт, что англичанин Пристли первым изолировал газ и написал об этом. Частично это объясняется поэмой, восхваляющей газ под названием «Кислород» в популярной книге «Ботанический сад» (1791 г.) Эразма Дарвина, дедушки Чарльза Дарвина.

Поздняя история

Согласно оригинальной атомной гипотезе Джона Далтона, все элементы являются одноатомными, а атомы в соединениях обычно имеют простейшие атомные отношения по отношению друг к другу. Например, Далтон предположил, что формула воды была НО, а атомная масса кислорода в 8 раз больше, чем у водорода, вместо современного значения около 16. В 1805 году Джозеф Луи Гей-Люссак и Александр фон Гумбольдт показали, что вода образуется из двух объемов водорода и одного объема кислорода; и к 1811 году Амедео Авогадро пришел к правильной интерпретации состава воды, основанной на том, что теперь называется законом Авогадро и двухатомными элементарными молекулами в этих газах. К концу 19 века ученые поняли, что воздух может быть сжижен и его компоненты могут быть изолированы путем сжатия и охлаждения. Используя каскадный метод, швейцарский химик и физик Рауль Пьер Пикте испарял жидкий диоксид серы, чтобы сжижать углекислый газ, который, в свою очередь, испарялся, чтобы охладить кислородный газ, что достаточно для его сжижения. 22 декабря 1877 года он отправил телеграмму во Французскую академию наук в Париже, объявив о своем открытии жидкого кислорода. Спустя два дня, французский физик Луи-Поль Кайете объявил о своем собственном методе сжижения молекулярного кислорода. В каждом случае производилось всего несколько капель жидкости, и никакого значимого анализа не проводилось. Кислород впервые был сжижен в стабильном состоянии 29 марта 1883 года польскими учеными из Ягеллонского университета, Зигмунтом Врублевски и Каролем Ольшевски. В 1891 году шотландский химик Джеймс Дьюар смог получить достаточно жидкого кислорода для исследования. Первый коммерчески жизнеспособный процесс получения жидкого кислорода был независимо разработан в 1895 году немецким инженером Карлом фон Линде и британским инженером Уильямом Хэмпсоном. Они оба опустили температуру воздуха до такой степени, пока газ не стал сжижаться, а затем перегоняли составляющие газы, кипятя их по очереди и захватывая их отдельно. Позднее, в 1901 году, впервые была продемонстрирована сварка оксиацетиленом, при сжигании смеси ацетилена и сжатого О2. Этот метод сварки и резки металла стал более распространенным. В 1923 году американский ученый Роберт Х. Годдард стал первым человеком, разработавшим двигатель, сжижающий жидкое топливо; в этом двигателе использовался бензин для топлива и жидкий кислород в качестве окислителя. 16 марта 1926 года в Оберне, штат Массачусетс, США, Годдард успешно пролетел на небольшой ракете с жидким топливом 56 м на скорости 97 км / ч. Уровни кислорода в атмосфере слегка различаются по всему миру, возможно, из-за сжигания ископаемого топлива.

Характеристики

Свойства и молекулярная структура

При стандартной температуре и давлении, кислород представляет собой бесцветный, безвкусный газ, не имеющий запаха, с молекулярной формулой O2, называемый диоксидом. Являясь диоксидом, кислород имеет два атома, химически связанных друг с другом. Эта связь может быть описана по-разному, на основе уровня теории, но разумно и просто описывается как ковалентная двойная связь, которая возникает в результате заполнения молекулярных орбиталей, образованных из атомных орбиталей отдельных атомов кислорода, заполнение которых приводит к связи порядка двух. Более конкретно, двойная связь является результатом последовательной, низкой и высокой энергии или Aufbau, заполняя орбитали и, как следствие, отменяя вклады двух электронов после последовательного заполнения низких σ и σ*-орбиталей; σ перекрытие двух атомных 2p-орбиталей, лежащих вдоль молекулярной оси OO и формируя π-перекрытие двух пар атомных 2p-орбиталей, перпендикулярных оси OO-молекул, а затем отменяя вклады от оставшихся двух из шести 2p-электронов после их частичного заполнения наименьших π- и π*-орбиталей . Эта комбинация аннулирования σ и π перекрытий приводит к характеру и реакционной способности двойного связывания диоксида и триплетному электронному основному состоянию. Конфигурация электронов с двумя неспаренными электронами, найденная в двуосных орбиталях с равной энергией, представляют собой конфигурацию, называемую триплетным состоянием спина. Следовательно, основное состояние молекулы O2 называется триплетным кислородом. При наивысшей энергии, частично заполненные орбитали являются антисвязывающими, и поэтому их заполнение ослабляет порядок связей с трех до двух. Из-за его неспаренных электронов, триплетный кислород медленно реагирует с большинством органических молекул, которые имеют парные спины электронов; это предотвращает самовозгорание. В триплетной форме, молекулы O2 парамагнитны. То есть, они придают магнитный характер кислороду, когда он находится в присутствии магнитного поля, из-за спиновых магнитных моментов неспаренных электронов в молекуле и отрицательной энергии обмена между соседними молекулами O2. Жидкий кислород настолько магнитен, что в лабораторных демонстрациях мостик жидкого кислорода может поддерживаться против собственного веса между полюсами мощного магнита. Синглетный кислород – это название, присвоенное нескольким более высокоэнергетическим видам молекулярного O2, в котором все спины электронов спарены. Он намного более реактивен с общими органическими молекулами, чем молекулярный кислород как таковой. В природе, синглетный кислород обычно образуется из воды при фотосинтезе, используя энергию солнечного света. Он также образуется в тропосфере путем фотолиза озона светом короткой длины волны и иммунной системой в качестве источника активного кислорода. Каротиноиды в фотосинтезирующих организмах (и, возможно, животных) играют важную роль в поглощении энергии из синглетного кислорода и превращении его в невозбужденное основное состояние до того, как оно может нанести вред тканям.

Аллотропы кислорода

Распространенный аллотроп элементарного кислорода на Земле называется дикислородом, O2, и представляет собой большую часть атмосферного кислорода на Земле. O2 имеет длину связи 121 мкм и энергию связи 498 кДж · моль-1, которая меньше энергии других двойных связей или пар одиночных связей в биосфере и отвечает за экзотермическую реакцию O2 с любой органической молекулой. Из-за своего энергетического содержания, O2 используется сложными формами жизни, такими как животные, в клеточном дыхании. Трикислород (O3) обычно известен как озон и является очень реактивной аллотропией кислорода, которая повреждает легочную ткань. Озон образуется в верхней атмосфере, когда O2 сочетается с атомарным кислородом, создаваемым расщеплением O2 ультрафиолетовым (УФ) излучением. Поскольку озон сильно поглощает УФ-область спектра, озоновый слой верхней атмосферы функционирует как защитный радиационный экран для планеты. Вблизи поверхности Земли озон является загрязнителем, образующимся как побочный продукт автомобильных выхлопов. На низких земных орбитах существует достаточное количество атомного кислорода, чтобы вызвать коррозию космических аппаратов. Метастабильная молекула тетракислорода (O4) была обнаружена в 2001 году и, предположительно, существовала в одной из шести фаз твердого кислорода. В 2006 году было доказано, что этот этап, созданный путем повышения давления O2-20 ГПа, на самом деле является ромбоэдрическим O8. Этот кластер может быть намного более мощным окислителем, чем O2 или O3 и поэтому может использоваться в ракетном топливе. Металлическая фаза была обнаружена в 1990 году, когда твердый кислород подвергался давлению выше 96 ГПа, и в 1998 году было показано, что при очень низких температурах эта фаза становится сверхпроводящей.

Физические свойства

Кислород более легко растворяется в воде, чем азот, и в пресной воде растворяется легче, чем в морской воде. Вода, находящаяся в равновесии с воздухом, содержит приблизительно 1 молекулу растворенного О2 для каждых двух молекул N2 (1: 2), по сравнению с отношением атмосферного воздуха приблизительно 1: 4. Растворимость кислорода в воде зависит от температуры и примерно в два раза лучше (14,6 мг · л-1) растворяется при 0 ° С, чем при 20 ° С (7,6 мг · л-1). При 25 ° C и 1 стандартной атмосфере (101,3 кПа) воздуха, пресная вода содержит около 6,04 миллилитров (мл) кислорода на литр, а морская вода содержит около 4,95 мл на литр. При 5 ° C растворимость увеличивается до 9,0 мл (на 50% больше, чем при 25 ° C) на литр для воды и 7,2 мл (на 45% больше) на литр для морской воды. Кислород конденсируется при 90,20 К (-182,95 ° С, -297,31 ° F) и замораживается при 54,36 К (-218,79 ° С, -361,82 ° F) . Как жидкие, так и твердые O2 – прозрачные вещества светло-голубого цвета, вызванного поглощением в красном (в отличие от синего цвета неба, обусловленного рэлеевским рассеянием голубого света). Высокочистую жидкость O2 обычно получают путем фракционной перегонки сжиженного воздуха. Жидкий кислород также может конденсироваться из воздуха с использованием жидкого азота в качестве хладагента. Кислород является высокореактивным веществом и должен быть отделен от горючих материалов. Спектроскопия молекулярного кислорода связана с атмосферными процессами полярных сияний, воздушным светом и ночным свечением. Поглощение в герцбергском континууме и полосы Шумана-Рунге в ультрафиолете приводят к производству атомного кислорода, что важно в химии средней атмосферы . Возбужденный синглетный молекулярный кислород ответственен за красную хемилюминесценцию в растворе.

Изотопы и звездное происхождение

Естественно происходящий кислород состоит из трех стабильных изотопов, 16O, 17O и 18O, причем наиболее распространенным является 16O (99,762% естественного обилия) . Большинство 16O синтезируется в конце процесса слияния гелия в массивных звездах, но некоторое количество синтезируется в процессе горения неонов. 17O, в основном, производится сжиганием водорода в гелии во время цикла CNO, что делает его общим изотопом в зонах горения водорода звезд. Большая часть 18O получается, когда 14N (в большом количестве от сжигания CNO) захватывает ядро 4He, что делает 18O распространенным в богатых гелием зонах эволюционировавших массивных звезд. Было охарактеризовано четырнадцать радиоизотопов кислорода. Наиболее устойчивыми из них являются 15O с периодом полураспада 122,24 секунд и 140 с периодом полураспада 70,606 секунд. Все остальные радиоактивные изотопы имеют период полураспада менее 27 с, а большинство из них имеют период полураспада менее 83 миллисекунд. Наиболее распространенный режим распада изотопов, более легких, чем 16O, является β + -распад , производящий азот, а наиболее распространенный режим для изотопов, более тяжелых, чем 18O, является бета-распад с образованием фтора.

Распространенность

Кислород – самый распространенный химический элемент по массе в биосфере Земли, в воздухе, на море и на суше. Кислород является третьим наиболее распространенным химическим элементом во Вселенной после водорода и гелия. Около 0,9% массы Солнца – это кислород. Кислород составляет 49,2% земной коры по массе в составе оксидных соединений, таких как двуокись кремния, и является наиболее распространенным по массе элементом в земной коре. Он также является основным компонентом Мирового океана (88,8% по массе). Кислородный газ является вторым наиболее распространенным компонентом земной атмосферы, занимая 20,8% его объема и 23,1% его массы (около 1015 тонн). Земля необычна среди планет Солнечной системы Система из-за такой высокой концентрации кислорода в атмосфере: Марс (с 0,1% O2 по объему) и Венера имеют гораздо меньше кислорода. О2, окружающий эти планеты, создается исключительно действием ультрафиолетового излучения на кислородсодержащие молекулы, такие как диоксид углерода. Необычайно высокая концентрация газообразного кислорода на Земле является результатом кислородного цикла. Этот биогеохимический цикл описывает движение кислорода внутри и между его тремя основными резервуарами на Земле: атмосферой, биосферой и литосферой. Основным движущим фактором кислородного цикла является фотосинтез, который отвечает за современную атмосферу Земли. Фотосинтез высвобождает кислород в атмосферу, а дыхание, распад и сгорание удаляют его из атмосферы. В нынешнем равновесии, производство и потребление кислорода происходят с одинаковой скоростью. Свободный кислород также содержится в водоемах Земли. Повышенная растворимость O2 при более низких температурах имеет важные последствия для океанической жизни, поскольку полярные океаны поддерживают гораздо более высокую плотность жизни из-за их более высокого содержания кислорода. Вода, загрязненная питательными веществами растений, такими как нитраты или фосфаты, может стимулировать рост водорослей посредством процесса, называемого эвтрофикацией, и распад этих организмов и других биоматериалов может уменьшить содержание O2 в эвтрофных водоемах. Ученые оценивают этот аспект качества воды, измеряя биохимическую потребность в кислороде в воде или количество O2, необходимое для восстановления его до нормальной концентрации

Анализ

Палеоклиматологи измеряют отношение кислорода-18 и кислорода-16 в оболочках и скелетах морских организмов для определения климата миллионы лет назад. Молекулы морской воды, содержащие более легкий изотоп, кислород-16, испаряются с намного более высокой скоростью, чем молекулы воды, содержащие 12% более тяжелого кислорода-18, и это несоответствие увеличивается при более низких температурах. В периоды более низких глобальных температур, снег и дождь из этой испаренной воды имеют тенденцию быть выше в кислороде-16, а оставшаяся морская вода имеет тенденцию быть выше в кислороде-18. Морские организмы затем включают больше кислорода-18 в свои скелеты и раковины, чем в более теплом климате. Палеоклиматологи также непосредственно измеряют это соотношение в молекулах воды образцов ледяного ядра возрастом до сотен тысяч лет. Планетарные геологи измеряли относительные количества изотопов кислорода в образцах с Земли, Луны, Марса и метеоритов, но долго не могли получить контрольные значения для изотопных отношений в Солнце, которые, как полагают, являются такими же, как у первичной солнечной туманности. Анализ кремниевой пластины, подвергшейся воздействию солнечного ветра в космосе и возвращенной разрушенным космическим аппаратом «Генезис», показал, что Солнце имеет более высокую долю кислорода-16, чем Земля. Это говорит о том, что в ходе неизвестного нам процесса кислород-16 исчез с протопланетного материала диска Солнца до слияния пылевых зерен, которые образовали Землю. Кислород представляет собой две полосы спектрофотометрического поглощения, достигающие максимума на длинах волн 687 и 760 нм. Некоторые ученые, занимающиеся дистанционным зондированием, предложили использовать измерение сияния, исходящего из растительных навесов в этих полосах, чтобы охарактеризовать состояние здоровья растений со спутниковой платформы. Этот подход использует тот факт, что в этих полосах можно различить отражательную способность растительности от ее флуоресценции, которая намного слабее. Измерение технически затруднено низким отношением сигнал-шум и физической структурой растительности; но оно было предложено как возможный метод мониторинга углеродного цикла со спутников в глобальном масштабе.

Биологическая роль O2

Фотосинтез и дыхание

В природе, свободный кислород вырабатывается путем легкого расщепления воды при кислородном фотосинтезе. По некоторым оценкам, зеленые водоросли и цианобактерии в морской среде обеспечивают около 70% свободного кислорода, вырабатываемого на Земле, а остальное производится наземными растениями. Другие оценки океанического вклада в атмосферный кислород выше, а некоторые оценки ниже, что указывает на то, что океаны ежегодно производят ~ 45% атмосферного кислорода Земли . Упрощенная общая формула для фотосинтеза: 6 CO2 + 6 H2O + фотоны → C6H12O6 + 6 O2 или просто двуокись углерода + вода + солнечный свет → глюкоза + дикислород Фотолитическая эволюция кислорода происходит в тилакоидных мембранах фотосинтезирующих организмов и требует энергии четырех фотонов. Здесь принимает участие множество этапов, но результатом является образование протонного градиента через тилакоидную мембрану, которая используется для синтеза аденозинтрифосфата (АТФ) посредством фотофосфорилирования. О2, оставшийся (после производства молекулы воды), высвобождается в атмосферу. Кислород используется в митохондриях для получения АТФ во время окислительного фосфорилирования. Реакция на аэробное дыхание, по сути, является обратным процессом фотосинтеза и упрощается: C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + 2880 кДж · моль-1. У позвоночных, O2 диффундирует через мембраны в легких и в эритроциты. Гемоглобин связывает O2, меняя цвет от синевато-красного в ярко-красный (CO2 выделяется из другой части гемоглобина через эффект Бора). Другие животные используют гемоцианин (моллюски и некоторые членистоногие) или гемэритрин (пауки и омары) . В литре крови можно растворить 200 см3 O2. До открытия анаэробных многоклеточных животных, кислород считался обязательным условием для существования всех сложных форм жизни. Реактивные виды кислорода, такие как супероксид-ион (O- 2) и перекись водорода (H2O2), являются реактивными побочными продуктами использования кислорода в организмах. Части иммунной системы высших организмов создают перекись, супероксид и синглетный кислород для уничтожения вторгающихся микробов. Реактивные формы кислорода также играют важную роль в гиперчувствительном ответе растений на патогенную атаку. Кислород повреждает анаэробные организмы, которые были доминирующей формой ранней жизни на Земле до тех пор, пока О2 не начал накапливаться в атмосфере, около 2,5 миллиардов лет назад, во время оксигенации, примерно через миллиард лет после первого появления этих организмов. Взрослый человек в состоянии покоя вдыхает 1,8-2,4 г кислорода в минуту. Это составляет более 6 миллиардов тонн кислорода в год.

Живые организмы

Парциальное давление свободного кислорода в организме живых позвоночных является самым высоким в дыхательной системе, и уменьшается вдоль любой артериальной системы, в периферических тканях и венозной системе, соответственно. Парциальное давление – это давление, которое имел бы кислород, если бы он сам занимал весь объем.

Накопление в атмосфере

В атмосфере Земли почти не присутствовал газообразный кислород до того, как появились фотосинтетические археи и бактерии, вероятно, около 3,5 млрд лет назад. Свободный кислород впервые появился в значительных количествах во время палеопротерозойского эона (от 3,0 до 2,3 миллиарда лет назад). В течение первого миллиарда лет, любой свободный кислород, продуцируемый этими организмами, образовывал сочетание с растворенным железом в океанах с образованием полосчатых железных образований. Когда такие кислородные потоки стали насыщенными, свободный кислород начал выделяться из океанов 3-2,7 миллиарда лет назад, достигнув 10% своего нынешнего уровня около 1,7 миллиарда лет назад. Наличие большого количества растворенного и свободного кислорода в океанах и атмосфере, возможно, заставило большинство существующих анаэробных организмов исчезнуть во время оксигенации (кислородная катастрофа) около 2,4 миллиардов лет назад. Клеточное дыхание с использованием O2 позволяет аэробным организмам производить гораздо больше АТФ, чем анаэробные организмы. Клеточное дыхание O2 происходит у всех эукариот, включая все сложные многоклеточные организмы, такие как растения и животные. С начала периода кембрия, 540 миллионов лет назад, уровни O2 в атмосфере колебались между 15% и 30% по объему. К концу каменноугольного периода (около 300 миллионов лет назад) уровни атмосферного O2 достигли максимума 35% по объему, что, возможно, способствовало увеличению размера насекомых и земноводных в это время. Изменения в уровнях кислорода формировали климат прошлого. Когда уровень кислорода уменьшался, плотность воздуха снижалась, а это, в свою очередь, увеличивало поверхностное испарение и приводило к увеличению осадков и более теплым температурам. При нынешних скоростях фотосинтеза, потребовалось бы около 2000 лет для регенерации всего O2 в данной атмосфере.

Промышленное производство

Сто тысяч миллионов тонн O2 экстрагируются из воздуха для промышленного использования ежегодно двумя основными методами. Наиболее распространенным методом является фракционная перегонка сжиженного воздуха с перегонкой N2 в виде пара, в то время как O2 остается в виде жидкости. Другой первичный способ получения O2 – пропускать поток чистого сухого воздуха через один слой пары идентичных цеолитных молекулярных сит, который поглощает азот и доставляет газовый поток, составляющий от 90% до 93% O2. Одновременно с этим, азот выделяется из другого насыщенного азотом цеолитного слоя, уменьшая рабочее давление в камере и отводя часть кислородного газа из проецирующего слоя через него в обратном направлении потока. По истечении установленного времени цикла работы, два слоя взаимозаменяются, что позволяет обеспечить непрерывную подачу газообразного кислорода, прокачиваемого по трубопроводу. Это известно как адсорбция под давлением. Кислородный газ все чаще получают при помощи этих некриогенных технологий. Кислородный газ также может быть получен путем электролиза воды в молекулярный кислород и водород. Должно использоваться электричество постоянного тока: при использовании переменного тока, газы в каждом конце состоят из водорода и кислорода во взрывоопасном отношении 2: 1. Вопреки распространенному мнению, соотношение 2: 1, наблюдаемое при электролизе постоянного тока подкисленной водой, не доказывает, что эмпирическая формула воды представляет собой H2O, если не будут сделаны определенные предположения о молекулярных формулах самого водорода и кислорода. Аналогичным методом является электрокаталитическая эволюция O2 из оксидов и оксокислот. Также могут использоваться химические катализаторы, такие как химические генераторы кислорода или кислородные свечи, которые используются как часть оборудования для жизнеобеспечения на подводных лодках, и все еще являются частью стандартного оборудования на коммерческих авиалайнерах в случае чрезвычайных ситуаций сброса давления. Другой метод разделения воздуха заключается в том, чтобы сделать так, чтобы воздух растворялся через керамические мембраны на основе диоксида циркония либо высоким давлением, либо электрическим током для получения почти чистого газа O2.

Хранение

Методы хранения кислорода включают резервуары для кислорода высокого давления, криогеники и химические соединения. По соображениям экономии, кислород часто транспортируется большими партиями в виде жидкости в специально изолированных танкерах, поскольку один литр сжиженного кислорода эквивалентен 840 литрам газообразного кислорода при атмосферном давлении и 20 ° C (68 ° F). Такие танкеры используются для пополнения емкостей для хранения жидкого кислорода, которые стоят за пределами больниц и других учреждений, которым требуются большие объемы чистого газообразного кислорода. Жидкий кислород пропускают через теплообменники, которые преобразуют криогенную жидкость в газ до того, как он попадет в здание. Кислород также хранится и поставляется в меньших цилиндрах, содержащих сжатый газ; форма, которая полезна в некоторых переносных медицинских применениях и кислородно-топливной сварке и резке.

Применение

Медицина

Употребление кислорода из воздуха является основной целью дыхания, поэтому в медицине используется кислородная терапия, которая не только увеличивает уровень кислорода в крови пациента, но и оказывает вторичное влияние, снижая резистентность к кровотоку во многих типах пораженных легких и ослабляя нагрузку на сердце. Кислородная терапия используется для лечения эмфиземы, пневмонии, некоторых сердечных заболеваний (застойной сердечной недостаточности), некоторых заболеваний, вызывающих повышенное давление в легочной артерии, и любых заболеваний, ухудшающих способность организма принимать и использовать газообразный кислород. Такие методы лечения могут использоваться в больничных условиях, на дому или же вообще при помощи переносных устройств. Кислородные палатки когда-то использовались при кислородной терапии, но с тех пор были заменены, в основном, использованием кислородных масок или назальных канюлей. В гипербарической (с высоким давлением) медицине используются специальные кислородные камеры для увеличения парциального давления O2 вокруг пациента и, при необходимости, медицинского персонала. Этот метод лечения иногда используется при отравлении угарным газом, газовой гангрене и декомпрессионной болезни. Увеличение количества O2 в легких помогает вытеснить монооксид углерода из гем-группы гемоглобина. Кислородный газ является ядовитым для анаэробных бактерий, которые вызывают газовую гангрену, поэтому увеличение его парциального давления помогает убить их. Декомпрессионная болезнь возникает у дайверов, которые быстро декомпрессируют после погружения, что приводит к образованию пузырьков инертного газа, в основном, азота и гелия, в крови. Как можно более быстрое увеличение давления O2 помогает повторно перевести пузырьки обратно в кровь, чтобы эти избыточные газы могли выдыхаться естественным путем через легкие.

Поддержка жизни и рекреационное использование

O2 как дыхательный газ низкого давления применяется в современных космических костюмах, которые окружают тело пассажира дыхательным газом. В этих устройствах используется почти чистый кислород при примерно одной трети от нормального давления, что приводит к нормальному парциальному давлению в крови O2. Этот компромисс более высокой концентрации кислорода для более низкого давления необходим для поддержания гибкости костюма. Дайверы и подводники также используют искусственно поставляемый О2. Подводные лодки и атмосферные подводные костюмы обычно работают при нормальном атмосферном давлении. Дыхательный воздух очищается от углекислого газа путем химической экстракции, а кислород заменяется для поддержания постоянного парциального давления. Дайверы, погружающиеся при давлении окружающей среды, дышат воздушными или газовыми смесями с кислородной фракцией, подходящей для рабочей глубины. Чистый или почти чистый O2 при погружении при давлениях выше атмосферного, обычно ограничивается ребризерами или декомпрессией на относительно небольших глубинах (глубина ~ 6 метров или менее), или медицинской помощи в камерах рекомпрессии при давлениях до 2,8 бар, где от острой кислородной токсичности можно избавиться без риска утопления. Глубокое погружение требует значительного разведения O2 с другими газами, такими как азот или гелий, для предотвращения кислородной токсичности. Люди, которые поднимаются на горы или летают в самолётах без давления, иногда имеют приборы для поставки дополнительного O2. В коммерческих самолетах под давлением, аварийный O2 автоматически подается пассажирам в случае сброса давления в кабине. Внезапная потеря давления в кабине активирует химические генераторы кислорода над каждым сиденьем, в результате чего падают кислородные маски. Экзотермическая реакция затем производит постоянный поток газообразного кислорода. Кислород, предположительно вызывающий мягкую эйфорию, имеет историю рекреационного использования в кислородных барах и в спорте. Кислородные бары существуют в Японии, Калифорнии и Лас-Вегасе, штат Невада, с конца 1990-х годов, предлагая пользователю вдохнуть больше O2, чем обычно, за плату. Профессиональные спортсмены, особенно в американском футболе, иногда выходят с поля между играми и надевают кислородные маски, чтобы повысить производительность. Фармакологический эффект таких действий сомнителен; эффект плацебо – более вероятное объяснение. Доступные исследования подтверждают эффект повышения производительности от употребления обогащенных кислородом смесей, только если они используются во время аэробных упражнений. Другие виды рекреационного использования, в которых не используется дыхание, включают в себя пиротехнические применения.

Промышленное использование

При плавке железной руды в сталь потребляется 55% коммерческого кислорода. В этом процессе, O2 входит через фурму высокого давления в расплавленное железо, которое удаляет примеси серы и избыток углерода в соответствующих оксидах, SO2 и СО2. Реакции являются экзотермическими, поэтому температура возрастает до 1700 ° С. Еще 25% коммерчески произведенного кислорода используется химической промышленностью. Этилен реагирует с O2 для получения этиленоксида, который, в свою очередь, превращается в этиленгликоль; первичный питательный материал, используемый для производства множества продуктов, включая антифризы и полиэфирные полимеры (прекурсоры многих пластмасс и тканей). Большинство из оставшихся 20% коммерчески производимого кислорода используется в медицине, резке металла и сварке, в качестве окислителя в ракетном топливе и в обработке воды. Кислород используется в оксиацетиленовой сварке, при сжигании ацетилена с O2 для получения очень горячего пламени. В этом процессе, металл толщиной до 60 см (24 дюйма) сначала нагревается небольшим оксиацетиленовым пламенем, а затем быстро разрезается большим потоком O2.

Соединения кислорода

Окислительное состояние кислорода составляет -2 почти во всех известных соединениях кислорода. Состояние окисления -1 находится в нескольких соединениях, таких как пероксиды. Соединения, содержащие кислород в других состояниях окисления, очень необычны: -1/2 (супероксиды), -1/3 (озониды), 0 (элементная, гипофлуорная кислота), +1/2 (диоксигенил), +1 (диизоцианид диоксиген) и +2 (дифторид кислорода).

Оксиды и другие неорганические соединения

Вода (H2O) представляет собой оксид водорода и наиболее известное кислородное соединение. Атомы водорода ковалентно связаны с кислородом в молекуле воды, но также имеют дополнительное притяжение (около 23,3 кДж · моль-1 на атом водорода) к соседнему атому кислорода в отдельной молекуле. Эти водородные связи между молекулами воды удерживают их примерно на 15% ближе, чем можно было бы ожидать в простой жидкости с просто ван-дер-ваальсовыми силами. Благодаря своей электроотрицательности, кислород образует химические связи почти со всеми остальными элементами, чтобы получить соответствующие оксиды. Поверхность большинства металлов, таких как алюминий и титан, окисляется в присутствии воздуха и покрывается тонкой пленкой оксида, которая пассивирует металл и замедляет дальнейшую коррозию. Многие оксиды переходных металлов представляют собой нестехиометрические соединения с немного меньшим количеством металла, чем показывает химическая формула. Например, минерал FeO (wüstite) записывается как Fe1-xO, где x обычно составляет около 0,05. Кислород присутствует в атмосфере в следовых количествах в виде двуокиси углерода (CO2). Породы земной коры состоят в значительной части из оксидов кремния (кремний SiO2, как в граните и кварце), алюминия (оксид алюминия Al2O3, в боксите и корунде), железа (оксид железа (III) Fe2O3 в гематите и ржавчине) и карбоната кальция (в известняке). Остальная часть земной коры также состоит из соединений кислорода, в частности, различных сложных силикатов (в силикатных минералах). Мантия Земли гораздо большей массы, чем кора, и в основном состоит из силикатов магния и железа. Водорастворимые силикаты в форме Na4SiO4, Na2SiO3 и Na2Si2O5 используются в качестве моющих средств и адгезивов. Кислород также действует как лиганд для переходных металлов, образующий комплексы диоксигена с переходными металлами, в которых присутствует металл-O2. Этот класс соединений включает гем-белки гемоглобин и миоглобин. Экзотическая и необычная реакция происходит с PtF6, который окисляет кислород, чтобы получить O2 + PtF6 -.

Органические соединения

Среди наиболее важных классов органических соединений, которые содержат кислород (где «R» представляет собой органическую группу) можно выделить: спирты (R-OH); простые эфиры (R-O-R); кетоны (R-CO-R); альдегиды (R-CO-H); карбоновые кислоты (R-COOH); эфиры (R-COO-R); ангидриды кислот (R-CO-O-CO-R); и амиды (R-C (O) -NR2). Существует много важных органических растворителей, которые содержат кислород, включая: ацетон, метанол, этанол, изопропанол, фуран, ТГФ, диэтиловый эфир, диоксан, этилацетат, ДМФ, ДМСО, уксусную кислоту и муравьиную кислоту. Ацетон (CH3) 2CO) и фенол (C6H5OH) используются в качестве питающих материалов при синтезе многих веществ. Другими важными органическими соединениями, которые содержат кислород, являются: глицерин, формальдегид, глутаровый альдегид, лимонная кислота, уксусный ангидрид и ацетамид. Эпоксиды представляют собой простые эфиры, в которых атом кислорода является частью кольца из трех атомов. Элемент аналогично встречается практически во всех биомолекулах, которые важны для жизни (или генерируются ею). Кислород спонтанно реагирует со многими органическими соединениями при комнатной температуре или ниже комнатной температуры в процессе, называемом автоокислением. Большинство органических соединений, содержащих кислород, не производятся прямым воздействием O2. Органические соединения, важные в промышленности и торговле, которые производятся путем прямого окисления предшественника, включают этиленоксид и перуксусную кислоту.

Безопасность и меры предосторожности

Стандарт NFPA 704 оценивает сжатый кислородный газ как не опасный для здоровья, негорючий и нереактивный газ, но окислитель. Охлажденный жидкий кислород (LOX) имеет рейтинг опасности для здоровья 3 (увеличивает риск гипероксии из конденсированных паров, а также имеет риски, общие для криогенных жидкостей, такие как обморожение).

Токсичность кислорода

Газообразный кислород (O2) может быть токсичным при повышенном парциальном давлении, приводя к судорогам и другим проблемам со здоровьем.

Кислород (O) – газ, который не имеет цвета, вкуса и запаха, химическая формула которого состоит из двух атомов. Кислород может быть не только в виде газа, но есть и жидкий кислород, который имеет светло – голубой цвет, а кислород в твёрдом виде представляет собой кристаллы светло – синего цвета.

Считается, что честь открытия кислорода принадлежит сразу трём знаменитым химикам. Первый химик – Джозеф Пристли получил этот газ в 1774 году, когда разложил оксид ртути в герметичном сосуде. Но он и не знал, что в результате этого разложения получил новый химический элемент. Свой эксперимент Пристли сообщил другому знаменитому химику того времени – Антуану Лавуазье, и тот без особого труда определил, что кислород – это часть не только воздуха, но и кислот и многих веществ. И, наконец, совершенно независимо от двух предыдущих учёных этот газ открыл Карл Шееле, когда прокалил селитру с серной кислотой.

А вот самому названию «кислород» обязан нашему соотечественнику – великому учёному М.В. Ломоносову. Именно он вместе с другими новыми словами ввёл в русский язык слово «кислота», ведь предложенное название кислорода Лавуазье «оксиген» переводится как «порождающий кислоту». Ведь раньше считали, что кислород порождает кислоту.

Кислород – самый распространённый элемент на нашей планете. Этот элемент входит в состав практически всех органических веществ и содержится во всех живых клетках. В промышленности этот газ получают из воздуха.

Кислород не намного тяжелее воздуха, один литр этого газа весит 1,429 грамм. Этот газ практически не растворим в воде и спирте, а вот в расплавленном серебре растворяется намного лучше. Кислород – сильный окислитель. При окислении образуются оксиды, среди которых самым известным является ржавчина. И, конечно же, без этого газа просто невозможны такие распространенные процессы в природе как горение, гниение и дыхание.

Биологическая роль кислорода в природе очень высока. Ведь большинство живых существ являются анаэробами, то есть дышат кислородом. Но чаще всего этот газ применяется в медицине. Знаменитый кислородный коктейль применяется для того, чтобы улучшить пищеварение, а вот введение кислорода под кожу применяется при слоновости и гангрене. Так же кислород применяется для дезинфекции воздуха и питьевой воды. А озонирование воды – очень популярный метод для насыщения её пузырьками кислорода, ведь озон – это тот же самый кислород, только имеющий более простой состав.

Однако, несмотря на кажущуюся безопасность, есть такие смеси кислорода, которые представляют довольно большую опасность для человека. Например, синглетный кислород, перекись водорода, супероксид и гидроксильный радикал.

А вот некоторые факты, связанные с кислородом. Дерево даёт 118 килограмм кислорода в год. Это значит, что два дерева способны снабжать этим жизненно необходимым газом семью из четырёх человек ровно один год. А вот французские пожарные постоянно носят с собой специальные кислородные маски для животных для того, чтобы спасать их от отравления угарным газом во время пожара.

КИСЛОРОД, О (а. oxygen; и. Sauerstoff; ф. oxygene; и. oxigeno), — химический элемент VI группы периодической системы Менделеева , атомный номер 8, атомная масса 15,9994. В природе состоит из трёх стабильных изотопов: 16 О (99,754%), 17 О (0,0374%), 18 О (0,2039%). Открыт независимо шведским химиком К. В. Шееле (1770) и английским исследователем Дж. Пристли (1774). В 1775 французский химик А. Лавуазье нашёл, что воздух состоит из двух газов — кислорода и азота и дал первому название.

Более 99,9% кислорода Земли находится в связанном состоянии. Кислород — главный фактор, регулирующий распределение элементов в планетарном масштабе . Содержание его с глубиной закономерно уменьшается. Количество кислорода в магматических породах меняется от 49% в кислых эффузивах и до 38-42% в дунитах и кимберлитах . Содержание кислорода в метаморфических породах соответствует глубинности их формирования: от 44% в эклогитах до 48% в кристаллических сланцах . Максимум кислорода в осадочных породах 49-51%. При погружении осадков происходит их дегидратация и частичное восстановление оксидного железа , сопровождающиеся уменьшением количества кислорода в породе. При подъёме горных пород из глубин в приповерхностные условия начинаются процессы их изменения с привносом воды и углекислоты и содержание кислорода повышается. Исключительную роль в геохимических процессах играет свободный кислород, значение которого определяется его высокой химической активностью, большой миграционной способностью и постоянным, относительно высоким содержанием в биосфере , где он не только расходуется, но и воспроизводится.

Свободный кислород

Полагают, что свободный кислород появился в протерозое в результате фотосинтеза. В гипергенных процессах кислород — один из основных агентов, он окисляет сероводород и низшие оксиды. Кислород определяет поведение многих элементов: повышает миграционную способность халькофилов, окисляя сульфиды до подвижных сульфатов, снижает подвижность железа и , осаждая их в виде гидроксидов и обусловливая этим их разделение, и т. д. В водах океана содержание кислорода меняется: летом океан отдаёт кислород в атмосферу, зимой поглощает его. Полярные регионы обогащены кислородом. Важное геохимическое значение имеют соединения кислорода — и углекислота.

Первичный изотопный состав кислорода Земли отвечал изотопному составу метеоритов и ультраосновных пород (18О = 5,9-6,4%). Процессы осадконакопления привели к фракционированию изотопов между осадками и водой и обеднению тяжёлым кислородом вод океана. Кислород атмосферы обеднён 18 О по сравнению с кислородом океана, принятым за стандарт. Щелочные породы, граниты, метаморфические и осадочные породы обогащаются тяжёлым кислородом. Вариации изотопного состава в земных объектах определяются в основном температурой протекания процесса. На этом основана изотопная термометрия карбонатообразования и других геохимических процессов.

Получение кислорода

Основной промышленный метод получения кислорода — разделение воздуха методом глубокого охлаждения. Как побочный продукт кислород получают при электролизе воды. Разработан способ получения кислорода методом избирательной диффузии газов через молекулярные сита.

Газообразный кислород

Газообразный кислород применяется в металлургии для интенсификации доменных и сталеплавильных процессов, при выплавке цветных металлов в печах , бессемеровании штейнов и др. (свыше 60% потребляемого кислорода); как окислитель во многих химических производствах; в технике — при сварке и резке металлов; при подземной газификации угля и др.; озон — при стерилизации пищевой воды и дезинфекции помещений. Жидкий кислород используют как окислитель для ракетных топлив.

Кислород – химический элемент, свойства которого будут рассмотрены в следующих нескольких параграфах. Обратимся к Периодической Системе химических элементов Д.И. Менделеева. Элемент кислород расположен во 2 периоде, VI группе, главной подгруппе.

Там же указано, что относительная атомная масса кислорода равна 16.

По порядковому номеру кислорода в Периодической Системе можно легко определить количество электронов, содержащихся в его атоме, заряд ядра атома кислорода, количество протонов.

Валентность кислорода в большинстве соединений равна II. Атом кислорода может присоединять два электрона и превращаться в ион: O0 + 2ē = O−2.

Стоит отметить, что кислород – самый распространенный элемент на нашей планете. Кислород входит в состав воды. Морские и пресные воды на 89% по массе состоят из кислорода. Кислород входит в состав множества минералов и горных пород. Массовая доля кислорода в земной коре составляет около 47%. В воздухе кислорода содержится около 23% по массе.

Физические свойства кислорода

При взаимодействии двух атомов кислорода образуется устойчивая молекула простого вещества кислорода O2. Данное простое вещество, как и элемент, называется кислородом. Не путайте кислород-элемент, и кислород – простое вещество!

По физическим свойствам кислород – бесцветный газ без запаха и вкуса. Практически нерастворим в воде (при комнатной температуре и нормальном атмосферном давлении растворимость кислорода составляет около 8 мг на один литр воды).

Кислород растворим в воде – в 1 л воды при температуре 20°С растворяется 31 мл кислорода (0,004% по массе). Однако этого количества достаточно для дыхания рыб, живущих в водоемах. Газообразный кислород немного тяжелее воздуха: 1 л воздуха при температуре 0°С и обычном давлении весит 1,29 г, а 1 л кислорода – 1,43 г.

Кислород проявляет интересные свойства при сильном охлаждении. Так, при температуре –183°С кислород конденсируется в прозрачную подвижную жидкость бледно- голубого цвета.

Если жидкий кислород охладить еще сильнее, то при температуре –218°С кислород «замерзает» в виде синих кристаллов. Если температуру постепенно повышать, то при –218°С, твердый кислород начнет плавится, а при –183°С – закипит. Следовательно, температуры кипения и конденсации, а также температуры замерзания и плавления для веществ являются одинаковыми.

Для хранения и транспортировки жидкого кислорода используют так называемые сосуды Дьюара . Сосуды Дьюара используют для хранения и транспортировки жидкостей, температура которых должна длительное время оставаться постоянной. Сосуд Дьюара носит имя его изобретателя, шотландского физика и химика Джеймса Дьюара.

Простейшим сосудом Дьюара является бытовой термос. Устройство сосуда довольно простое: это колба, помещенная в большую колбу. Из герметичного пространства между колбами откачивается воздух. Благодаря отсутствию воздуха между стенками колб, жидкость, налитая во внутреннюю колбу, долгое время не остывает или не нагревается.

Кислород — парамагнитное вещество, то есть в жидком и твердом состояниях он притягивается магнитом

В природе существует еще одно простое вещество, состоящее из атомов кислорода. Это озон. Химическая формула озона О3. Озон, так же как и кислород, в обычных условиях – газ. Озон образуется в атмосфере во время грозовых разрядов. Характерный запах свежести после грозы является запахом озона.

Если озон получить в лаборатории и собрать значительное количество его, то в больших концентрациях озон будет иметь резкий неприятный запах. Получают озон в лаборатории в специальных приборах – озонаторах . Озонатор – стеклянная трубка, в которую подают ток кислорода, и создают электрический разряд. Электрический разряд превращает кислород в озон:

В отличие от бесцветного кислорода, озон – газ голубого цвета. Растворимость озона в воде составляет около 0,5 л газа на 1 литр воды, что значительно больше, чем у кислорода. С учетом этого свойства озон применяется для обеззараживания питьевой воды, так как оказывает губительное действие на болезнетворные микроорганизмы.

При низких температурах, озон ведет себя аналогично кислороду. При температуре –112°С он конденсируется в жидкость фиолетового цвета, а при температуре –197°С кристаллизуется в виде темно-фиолетовых, почти черных кристаллов

Таким образом, можно сделать вывод, что атомы одного и того же химического элемента могут образовывать разные простые вещества.

Явление существования химического элемента в виде нескольких простых веществ называется аллотропией.

Простые вещества, образованные одним и тем же элементом, называют аллотропными модификациями

Значит, кислород и озон – аллотропные модификации химического элемента кислорода. Существуют данные, что при сверхнизких температурах, в жидком или твердом состоянии кислород может существовать в виде молекул О4 и О8.

Круговорот кислорода в природе

Количество кислорода в атмосфере постоянно. Следовательно, расходующийся кислород постоянно пополняется новым.

Важнейшими источниками кислорода в природе является углекислый газ и вода. Кислород попадает в атмосферу главным образом в результате процесса фотосинтеза, протекающего в растениях, согласно схеме реакции:

CO2 + H2O C6H12O6 + O2.

Кислород может образовываться и в верхних слоях атмосферы Земли: вследствие воздействия солнечного излучения, водяные пары частично разлагаются с образованием кислорода.

Кислород расходуется при дыхании, сжигании топлива, окислении различных веществ в живых организмах, окислении неорганических веществ, содержащихся в природе. Большое количество кислорода расходуется в технологических процессах, таких как, например, выплавка стали.

Круговорот кислорода в природе можно представить в виде схемы:

  • Кислород – элемент VI группы, главной подгруппы, 2 периода Периодической Системы Д.И. Менделеева
  • Элемент кислород образует в природе две аллотропные модификации: кислород О2 и озон О3
  • Явление существования химического элемента в виде нескольких простых веществ называется аллотропией
  • Простые вещества называют аллотропными модификациями
  • Кислород и озон имеют различные физические свойства
  • Кислород – бесцветный газ без запаха, вкуса, практически не растворим в воде, при температуре –183°С конденсируется в бледно-голубую жидкость. При температуре –218°С кристаллизуется в виде кристаллов синего цвета
  • Озон – газ синего цвета с резким неприятным запахом. Хорошо растворим в воде. При температуре –112°С конденсируется в фиолетовую жидкость, кристаллизуется в виде темно-фиолетовых, почти черных кристаллов, при температуре –197°С
  • Жидкий кислород, озон и другие газы хранят в сосудах Дьюара

Министерство образования и науки РФ

«КИСЛОРОД»

Выполнил:

Проверил:


Общая характеристика кислорода.

КИСЛОРОД (лат. Oxygenium), O (читается «о»), химический элемент с атомным номером 8, атомная масса 15,9994. В периодической системе элементов Менделеева кислород расположен во втором периоде в группе VIA.

Природный кислород состоит из смеси трех стабильных нуклидов с массовыми числами 16 (доминирует в смеси, его в ней 99,759 % по массе), 17 (0,037%) и 18 (0,204%). Радиус нейтрального атома кислорода 0,066 нм. Конфигурация внешнего электронного слоя нейтрального невозбужденного атома кислорода 2s2р4. Энергии последовательной ионизации атома кислорода 13,61819 и 35,118 эВ, сродство к электрону 1,467 эВ. Радиус иона О 2 – при разных координационных числах от 0,121 нм (координационное число 2) до 0,128 нм (координационное число 8). В соединениях проявляет степень окисления –2 (валентность II) и, реже, –1 (валентность I). По шкале Полинга электроотрицательность кислорода 3,5 (второе место среди неметаллов после фтора).

В свободном виде кислород - газ без цвета, запаха и вкуса.

Особенности строения молекулы О 2: атмосферный кислород состоит из двухатомных молекул. Межатомное расстояние в молекуле О 2 0,12074 нм. Молекулярный кислород (газообразный и жидкий) - парамагнитное вещество, в каждой молекуле О 2 имеется по 2 неспаренных электрона. Этот факт можно объяснить тем, что в молекуле на каждой из двух разрыхляющих орбиталей находится по одному неспаренному электрону.

Энергия диссоциации молекулы О 2 на атомы довольно высока и составляет 493,57 кДж/моль.

Физические и химические свойства

Физические и химические свойства: в свободном виде встречается в виде двух модификаций О 2 («обычный» кислород) и О 3 (озон). О 2 - газ без цвета и запаха. При нормальных условиях плотность газа кислорода 1,42897 кг/м 3 . Температура кипения жидкого кислорода (жидкость имеет голубой цвет) равна –182,9°C. При температурах от –218,7°C до –229,4°C существует твердый кислород с кубической решеткой (-модификация), при температурах от –229,4°C до –249,3°C - -модификация с гексагональной решеткой и при температурах ниже –249,3°C - кубическая -модификация. При повышенном давлении и низких температурах получены и другие модификации твердого кислорода.

При 20°C растворимость газа О 2: 3,1 мл на 100 мл воды, 22 мл на 100 мл этанола, 23,1 мл на 100 мл ацетона. Существуют органические фторсодержащие жидкости (например, перфторбутилтетрагидрофуран), в которых растворимость кислорода значительно более высокая.

Высокая прочность химической связи между атомами в молекуле О2 приводит к тому, что при комнатной температуре газообразный кислород химически довольно малоактивен. В природе он медленно вступает в превращения при процессах гниения. Кроме того, кислород при комнатной температуре способен реагировать с гемоглобином крови (точнее с железом II гема), что обеспечивает перенос кислорода от органов дыхания к другим органам.

Со многими веществами кислород вступает во взаимодействие без нагревания, например, со щелочными и щелочноземельными металлами (образуются соответствующие оксиды типа Li 2 O, CaO и др., пероксиды типа Na 2 O2, BaO 2 и др. и супероксиды типа КО 2 , RbO 2 и др.), вызывает образование ржавчины на поверхности стальных изделий. Без нагревания кислород реагирует с белым фосфором, с некоторыми альдегидами и другими органическими веществами.

При нагревании, даже небольшом, химическая активность кислорода резко возрастает. При поджигании он реагирует с взрывом с водородом, метаном, другими горючими газами, с большим числом простых и сложных веществ. Известно, что при нагревании в атмосфере кислорода или на воздухе многие простые и сложные вещества сгорают, причем образуются различные оксиды, например:

S+O 2 = SO 2 ; С + O 2 = СО 2

4Fe + 3O 2 = 2Fe 2 O 3 ; 2Cu + O 2 = 2CuO

4NH 3 + 3O 2 = 2N 2 + 6H 2 O; 2H 2 S + 3O 2 = 2H 2 O + 2SO 2

Если смесь кислорода и водорода хранить в стеклянном сосуде при комнатной температуре, то экзотермическая реакция образования воды

2Н 2 + О 2 = 2Н 2 О + 571 кДж

протекает крайне медленно; по расчету, первые капельки воды должны появиться в сосуде примерно через миллион лет. Но при внесении в сосуд со смесью этих газов платины или палладия (играющих роль катализатора), а также при поджигании реакция протекает с взрывом.

С азотом N 2 кислород реагирует или при высокой температуре (около 1500-2000°C), или при пропускании через смесь азота и кислорода электрического разряда. При этих условиях обратимо образуется оксид азота (II):

N 2 + O 2 = 2NO

Возникший NO затем реагирует с кислородом с образованием бурого газа (диоксида азота):

2NO + О 2 = 2NO2

Из неметаллов кислород напрямую ни при каких условиях не взаимодействует с галогенами, из металлов - с благородными металлами серебром, золотом, платиной и др.

Бинарные соединения кислорода, в которых степень окисления атомов кислорода равна –2, называют оксидами (прежнее название - окислы). Примеры оксидов: оксид углерода (IV) CO 2 ,оксид серы (VI) SO 3 , оксид меди (I) Cu 2 O, оксид алюминия Al 2 O 3 , оксид марганца (VII) Mn 2 O 7 .

Кислород образует также соединения, в которых его степень окисления равна –1. Это - пероксиды (старое название - перекиси), например, пероксид водорода Н 2 О 2 , пероксид бария ВаО 2 , пероксид натрия Na 2 O 2 и другие. В этих соединениях содержится пероксидная группировка - О - О -. С активными щелочными металлами, например, с калием, кислород может образовывать также супероксиды, например, КО 2 (супероксид калия), RbO 2 (супероксид рубидия). В супероксидах степень окисления кислорода –1/2. Можно отметить, что часто формулы супероксидов записывают как К 2 О 4 , Rb 2 O 4 и т.д.

С самым активным неметаллом фтором кислород образует соединения в положительных степенях окисления. Так, в соединении O 2 F 2 степень окисления кислорода +1, а в соединении O 2 F - +2. Эти соединения принадлежат не к оксидам, а к фторидам. Фториды кислорода можно синтезировать только косвенным путем, например, действуя фтором F 2 на разбавленные водные растворы КОН.

История открытия

История открытия кислорода, как и азота, связана с продолжавшимся несколько веков изучением атмосферного воздуха. О том, что воздух по своей природе не однороден, а включает части, одна из которых поддерживает горение и дыхание, а другая - нет, знали еще в 8 веке китайский алхимик Мао Хоа, а позднее в Европе - Леонардо да Винчи. В 1665 английский естествоиспытатель Р. Гук писал, что воздух состоит из газа, содержащегося в селитре, а также из неактивного газа, составляющего большую часть воздуха. О том, что воздух содержит элемент, поддерживающий жизнь, в 18 веке было известно многим химикам. Шведский аптекарь и химик Карл Шееле начал изучать состав воздуха в 1768. В течение трех лет он разлагал нагреванием селитры (KNO 3 , NaNO 3) и другие вещества и получал «огненный воздух», поддерживающий дыхание и горение. Но результаты своих опытов Шееле обнародовал только в 1777 году в книге «Химический трактат о воздухе и огне». В 1774 английский священник и натуралист Дж. Пристли нагреванием «жженой ртути» (оксида ртути HgO) получил газ, поддерживающий горение. Будучи в Париже, Пристли, не знавший, что полученный им газ входит в состав воздуха, сообщил о своем открытии А. Лавуазье и другим ученым. К этому времени был открыт и азот. В 1775 Лавуазье пришел к выводу, что обычный воздух состоит из двух газов - газа, необходимого для дыхания и поддерживающего горение, и газа «противоположного характера» - азота. Лавуазье назвал поддерживающий горение газ oxygene - «образующий кислоты» (от греч. oxys - кислый и gennao - рождаю; отсюда и русское название «кислород»), так как он тогда считал, что все кислоты содержат кислород. Давно уже известно, что кислоты бывают как кислородсодержащими, так и бескислородными, но название, данное элементу Лавуазье, осталось неизменным. На протяжении почти полутора веков 1/16 часть массы атома кислорода служила единицей сравнения масс различных атомов между собой и использовалась при численной характеристике масс атомов различных элементов (так называемая кислородная шкала атомных масс).

Нахождение в природе: кислород - самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 47,4% массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8% (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % (по объему). Элемент кислород входит в состав более 1500 соединений земной коры.

Получение:

В настоящее время кислород в промышленности получают за счет разделения воздуха при низких температурах. Сначала воздух сжимают компрессором, при этом воздух разогревается. Сжатому газу дают охладиться до комнатной температуры, а затем обеспечивают его свободное расширение. При расширении температура газа резко понижается. Охлажденный воздух, температура которого на несколько десятков градусов ниже температуры окружающей среды, вновь подвергают сжатию до 10-15 МПа. Затем снова отбирают выделившуюся теплоту. Через несколько циклов «сжатие-расширение» температура падает ниже температуры кипения и кислорода, и азота. Образуется жидкий воздух, который затем подвергают перегонке (дистилляции). Температура кипения кислорода (–182,9°C) более чем на 10 градусов выше, чем температура кипения азота (–195,8°C). Поэтому из жидкости азот испаряется первым, а в остатке накапливается кислород. За счет медленной (фракционной) дистилляции удается получить чистый кислород, в котором содержание примеси азота составляет менее 0,1 объемного процента.

Loading...Loading...