Неверно что человеческий глаз воспринимает. «Человеческий глаз был создан, чтобы смотреть вдаль». Офтальмолог о том, почему наше зрение падает. Строение основных структур глаза

Человеческий глаз часто приводят в качестве примера удивительной природной инженерии - но судя по тому, что это один из 40 вариантов устройств, которые появлялись в процессе эволюции у разных организмов, нам стоит поумерить свой антропоцентризм и признать, что по строению человеческий глаз не является чем-то совершенным.

Рассказ про глаз учше всего начать с фотона. Квант электромагнитного излучения неспешно влетает строго в глаз ничего не подозревающего прохожего, который жмурится от неожиданного блика с чьих-то часов.

Первая деталь оптической системы глаза - это роговица. Она меняет направление движения света. Это возможно благодаря такому свойству света, как преломление, ответственного в том числе за радугу. Скорость света постоянна в вакууме - 300 000 000 м/с. Но при переходе из одной среды в другую (в данном случае из воздуха в глаз) свет меняет свою скорость и направление движения. У воздуха коэффициент преломления равен 1,000293, у роговицы - 1,376. Это значит, что луч света в роговице замедляет свое движение в 1,376 раз и отклоняется ближе к центру глаза.

Любимый способ раскалывать партизан - светить им яркой лампой в лицо. Это больно по двум причинам. Яркий свет - это мощное электромагнитное излучение: триллионы фотонов атакуют сетчатку, и ее нервные окончания вынуждены передавать бешеное количество сигналов в мозг. От перенапряжения нервы, как провода, перегорают. При этом мышцы радужки вынуждены сжиматься так сильно, как только могут, отчаянно пытаясь закрыть зрачок и защитить сетчатку.

И подлетает к зрачку. С ним все просто - это отверстие в радужной оболочке. За счет круговых и радиальных мышц радужная оболочка может соответственно сужать и расширять зрачок, регулируя количество света, проникающего в глаз, как диафрагма в фотоаппарате. Диаметр зрачка человека может меняться от 1 до 8 мм в зависимости от освещенности.

Пролетев сквозь зрачок, фотон попадает на хрусталик - вторую линзу, ответственную за его траекторию. Хрусталик преломляет свет слабее, чем роговица, зато он подвижен. Хрусталик висит на цилинарных мышцах, которые меняют его кривизну, тем самым позволяя нам фокусироваться на предметах на разном расстоянии от нас.

Именно с фокусом связаны нарушения зрения. Самые распространенные - близорукость и дальнозоркость. Изображение в обоих случаях фокусируется не на сетчатке, как должно, а перед ней (близорукость), или за ней (дальнозоркость). Виноват в этом глаз, который меняет форму с круглой на овальную, и тогда сетчатка удаляется от хрусталика или приближется к нему.

После хрусталика фотон пролетает сквозь стекловидное тело (прозрачный студень - 2/3 объема всего глаза, на 99% - вода) прямиком на сетчатку. Здесь регистрируются фотоны, и сообщения о прибытии отправляются по нервам в мозг.

Сетчатка устлана клетками-фоторецепторами: когда света нет, они вырабатывают специальные вещества - нейротрансмиттеры, но как только в них попадает фотон, клетки-фоторецепторы перестают их вырабатывать - и это сигнал для мозга. Есть два типа этих клеток: палочки, которые более чувствительны к свету, и колбочки, которые лучше различают движение. Палочек у нас около ста миллионов и еще 6-7 миллионов колбочек, итого больше ста миллионов светочувствительных элементов - это больше 100 мегапикселей, что никакому «хасселю» не снилось.

Слепое пятно - точка прорыва, где совсем нет светочувствительных клеток. Оно довольно большое - 1-2 мм в диаметре. К счастью, у нас бинокулярное зрение и есть мозг, который совмещает две картинки c пятнами в одну нормальную.

На моменте передачи сигнала в человеческом глазу возникает проблема с логикой. Подводный, не особо нуждающийся в зрении житель осьминог в этом смысле гораздо последовательней. У осьминогов фотон сначала врезается в слой колбочек и палочек на сетчатке, сразу за которым ждет слой нейронов и передает сигнал в мозг. У человека свет сперва продирается сквозь слои нейронов - и только потом ударяется в фоторецепторы. Из-за этого в глазу есть первое пятно - слепое.

Второе пятно - желтое, это центральная область сетчатки прямо напротив зрачка, чуть выше зрительного нерва. Этим местом глаз видит лучше всего: концентрация светочувствительных клеток здесь сильно увеличена, поэтому наше зрение по центру визуального поля значительно острее периферийного.

Изображение на сетчатке перевернуто. Мозг умеет правильно интерпретировать картинку, и восстанавливает из перевернутого оригинальное изображение. Дети первые пару дней видят все вверх ногами, пока их мозг устанавливает свой фотошоп. Если надеть очки, переворачивающие изображение (это впервые проделали еще в 1896 году), то через пару дней наш мозг научится интерпретировать и такую перевернутую картинку правильно.

>>Физика: Глаз и зрение

Глаз - орган зрения животных и человека. Глаз человека состоит из глазного яблока, соединенного зрительным нервом с головным мозгом, и вспомогательного аппарата (веки, слезные органы и мышцы, двигающие глазное яблоко).
Глазное яблоко (рис. 94) защищено плотной оболочкой, называемой склерой . Передняя (прозрачная) часть склеры 1 называется роговицей . Роговица является самой чувствительной наружной частью человеческого тела (даже самое легкое ее касание вызывает мгновенное рефлекторное смыкание век).

За роговицей расположена радужная оболочка 2 , которая у людей может иметь разный цвет. Между роговицей и радужной оболочкой находится водянистая жидкость. В радужной оболочке есть небольшое отверстие - зрачок 3 . Диаметр зрачка может изменяться от 2 до 8 мм, уменьшаясь на свету и увеличиваясь в темноте.
За зрачком расположено прозрачное тело, напоминающее двояковыпуклую линзу , - хрусталик 4 . Снаружи он мягкий и почти студенистый, внутри более твердый и упругий. Хрусталик окружен мышцами 5 , прикрепляющими его к склере.
За хрусталиком расположено стекловидное тело 6 , представляющее собой бесцветную студенистую массу. Задняя часть склеры - глазное дно - покрыто сетчатой оболочкой (сетчаткой ) 7 . Она состоит из тончайших волокон, устилающих глазное дно и представляющих собой разветвленные окончания зрительного нерва.
Как возникают и воспринимаются глазом изображения различных предметов?
Свет , преломляясь в оптической системе глаза , которую образуют роговица, хрусталик и стекловидное тело, дает на сетчатке действительные, уменьшенные и обратные изображения рассматриваемых предметов (рис. 95). Попав на окончания зрительного нерва, из которых состоит сетчатка, свет раздражает эти окончания. По нервным волокнам эти раздражения передаются в мозг, и у человека появляется зрительное ощущение: он видит предметы.

Изображение предмета, возникающее на сетчатке глаза, является перевернутым . Первым, кто это доказал, построив ход лучей в системе глаза, был И. Кеплер. Чтобы проверить этот вывод, французский ученый Р. Декарт (1596-1650) взял глаз быка и, соскоблив с его задней стенки непрозрачный слой, поместил в отверстии, проделанном в оконном ставне. И тут же на полупрозрачной стенке глазного дна он увидел перевернутое изображение картины, наблюдавшейся из окна.
Почему же тогда мы видим все предметы такими, как они есть, т. е. неперевернутыми? Дело в том, что процесс зрения непрерывно корректируется мозгом, получающим информацию не только через глаза, но и через другие органы чувств. В свое время английский поэт Уильям Блейк (1757-1827) очень верно подметил:
Посредством глаза, а не глазом
Смотреть на мир умеет разум.

В 1896 г. американский психолог Дж. Стреттон поставил на себе эксперимент. Он надел специальные очки, благодаря которым на сетчатке глаза изображения окружающих предметов оказывались не обратными, а прямыми. И что же? Мир в сознании Стреттона перевернулся. Все предметы он стал видеть вверх ногами. Из-за этого произошло рассогласование в работе глаз с другими органами чувств. У ученого появились симптомы морской болезни. В течение трех дней он ощущал тошноту. Однако на четвертые сутки организм стал приходить в норму, а на пятый день Стреттон стал чувствовать себя так же, как и до эксперимента. Мозг ученого освоился с новыми условиями работы, и все предметы он снова стал видеть прямыми. Но, когда он снял очки, все опять перевернулось. Уже через полтора часа зрение восстановилось, и он снова стал видеть нормально.
Любопытно, что подобная приспосабливаемость характерна лишь для человеческого мозга. Когда в одном из экспериментов переворачивающие очки надели обезьяне, то она получила такой психологический удар, что, сделав несколько неверных движений и упав, пришла в состояние, напоминающее кому. У нее стали угасать рефлексы, упало кровяное давление и дыхание стало частым и поверхностным. У человека ничего подобного не наблюдается.
Однако и человеческий мозг не всегда способен справиться с анализом изображения, получающегося на сетчатке глаза. В таких случаях возникают иллюзии зрения - наблюдаемый предмет нам кажется не таким, каков он есть на самом деле.
Есть еще одна особенность зрения, о которой нельзя не сказать. Известно, что при изменении расстояния от линзы до предмета меняется и расстояние до его изображения. Каким же образом на сетчатке сохраняется четкое изображение, когда мы переводим свой взгляд с удаленного предмета на более близкий?
Оказывается, те мышцы, которые прикреплены к хрусталику, способны изменять кривизну его поверхностей и тем самым оптическую силу глаза. Когда мы смотрим на далекие предметы, эти мышцы находятся в расслабленном состоянии и кривизна хрусталика оказывается сравнительно небольшой. При переводе взгляда на близлежащие предметы глазные мышцы сжимают хрусталик, и его кривизна, а следовательно, и оптическая сила увеличиваются.
Способность глаза приспосабливаться к видению как на близком, так и на более далеком расстоянии называется аккомодацией (от лат. accomodatio - приспособление). Благодаря аккомодации человеку удается фокусировать изображения различных предметов на одном и том же расстоянии от хрусталика - на сетчатке глаза.
Однако при очень близком расположении рассматриваемого предмета напряжение мышц, деформирующих хрусталик, усиливается, и работа глаза становится утомительной. Оптимальное расстояние при чтении и письме для нормального глаза составляет около 25 см. Это расстояние называют расстоянием ясного (или наилучшего ) зрения.
Какое преимущество дает зрение двумя глазами ?
Во-первых, именно благодаря наличию двух глаз мы можем различать, какой из предметов находится ближе, какой дальше от нас. Дело в том, что на сетчатках правого и левого глаза получаются отличающиеся друг от друга изображения (соответствующие взгляду на предмет как бы справа и слева). Чем ближе предмет, тем заметнее это различие. Оно и создает впечатление разницы в расстояниях. Эта же способность зрения позволяет видеть предмет объемным, а не плоским.
Во-вторых, благодаря наличию двух глаз увеличивается поле зрения . Поле зрения человека изображено на рисунке 97, а. Для сравнения рядом с ним показаны поля зрения лошади (рис. 97, в) и зайца (рис. 97, б). Глядя на эти рисунки, легко понять, почему хищникам так трудно подкрасться к этим животным, не выдав себя.

Зрение позволяет людям видеть друг друга Возможно ли самому видеть, но для других быть невидимым? Впервые на этот вопрос попытался ответить в своем романе «Человек-невидимка» английский писатель Герберт Уэллс (1866-1946). Человек окажется невидимым после того, как его вещество станет прозрачным и обладающим той же оптической плотностью, что и окружающий воздух. Тогда отражения и преломления света на границе человеческого тела с воздухом не будет, и он превратится в невидимку. Так, например, толченое стекло, имеющее на воздухе вид белого порошка, тут же исчезает из виду, когда его помещают в воду - среду, обладающую примерно той же оптической плотностью, что и стекло
В 1911 г немецкий ученый Шпальтегольц пропитал препарат мертвой ткани животного специально приготовленной жидкостью, после чего поместил его в сосуд с такой же жидкостью. Препарат стал невидимым.
Однако человек-невидимка должен быть невидимым на воздухе, а не в специально приготовленном растворе. А этого достигнуть не удается.
Но допустим, что человеку все-таки удастся стать прозрачным. Люди перестанут его видеть. А сможет ли он сам их видеть? Нет ведь все его части, в том числе и глаза, перестанут преломлять световые лучи, и, следовательно, никакого изображения на сетчатке глаза возникать не будет. Кроме того, для формирования в сознании человека видимого образа световые лучи должны поглощаться сетчаткой, передавая ей свою энергию. Эта энергия необходима для возникновения сигналов, поступающих по зрительному нерву в мозг человека. Если же у человека-невидимки глаза станут совершенно прозрачными, то этого происходить не будет. А раз так, то он вообще перестанет видеть. Человек-невидимка будет слепым.
Герберт Уэллс не учел этого обстоятельства и потому наделил своего героя нормальным зрением, позволяющим ему, оставаясь незамеченным, терроризировать целый город.

???
1. Как устроен глаз человека? Какие его части образуют оптическую систему?
2. Охарактеризуйте изображение, возникающее на сетчатке глаза.
3. Как передается изображение предмета в мозг? Почему мы видим предметы прямыми, а не перевернутыми?
4. Почему, переводя взгляд с близкого предмета на удаленный, мы продолжаем видеть его четкий образ?
5. Чему равно расстояние наилучшего зрения?
6. Какое преимущество дает зрение двумя глазами?
7. Почему человек-невидимка должен быть слепым?

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

24.05.2018

В повседневной жизненной круговерти мы редко обращаем внимание на глаза окружающих нас людей, а ведь это не только очень важный орган организма, позволяющий видеть окружающий нас мир, но и часть «образа», отражающая наше внутреннее состояние, передающая наши эмоции.

Вы можете точно сказать, какого цвета глаза у вас, ваших родных, друзей, коллег, соседей? Скорее всего, наиболее точно вы сможете ответить только о цвете своих глаз, вы же видите их в зеркале. Более или менее точно вы ответите о цвете глаз ваших родных - с ними-то вы чаще других встречаетесь взглядом или смотрите им в глаза? С долей сомнения вы дадите ответ о цвете глаз друзей, и мало кто с уверенностью ответит о цвете глаз коллег и соседей.

Маленький экскурс в далёкое прошлое

Как утверждают учёные, наши далёкие предки (австралопитеки, питекантропы, неандертальцы и ранние представители рода человеческого - кроманьонцы) имели скорей всего тёмный цвет глаз (карие или даже чёрные), и это было обусловлено их обитанием в тёплых районах земли с большим количеством солнечной энергии. Однако приблизительно 10-6 тысяч лет тому назад произошла мутация, повлиявшая на ген HERC2, отвечающий за выработку пигмента (меланина), который формирует не только цвет наших волос и кожи, но и цвет глаз. Эта мутация привела к тому, что выработка меланина в организме предков сократилась, что и способствовало появлению светлых глаз (серых, голубых). Более того, случается даже полное отключение этого гена или сбои в его выработке, и тогда мы можем наблюдать врождённые «отклонения» (нарушения), о которых мы расскажем ниже.

Учёные даже предположили, что все светлоглазые люди на планете имеют одного общего предка, от которого и унаследовали мутировавший ген.

Возвращаемся в наше время

В наши дни цветовая палитра человеческих глаз не ограничивается только тёмными (карими или чёрными) и светлыми (голубыми и серыми). И следует отметить, что обладатели тёмных и светлых глаз «распределены» по земле неравномерно. Так, например, среди африканцев гораздо больше людей с тёмными глазами, а жители скандинавских стран чаще всего обладают светлыми, и это объясняется их условиями жизни.

Как меняется цвет глаз в течение жизни?

Цвет глаз - характеристика, зависящая от пигментации их радужной оболочки.

Радужная оболочка состоит из переднего и заднего слоёв. Задний слой содержит много клеток, заполненных пигментом, который имеет тёмный цвет (за исключением альбиносов). Передний слой состоит из наружного пограничного отдела и стромы («подстилки»), в которой распределены хроматофоры, содержащие меланин. От того, как в этом слое распределится пигмент, и зависит цвет глаз.

Цвет глаз может меняться в течение жизни. Как известно, большинство новорождённых европейской расы рождается с голубыми или синими глазами, но уже в возрасте 3-6 месяцев глаза младенца могут потемнеть, и связано это с накоплением в радужной оболочке меланоцитов. Однако это может быть лишь «промежуточным вариантом». Цвет глаз окончательно устанавливается только к 10-12 годам. Впрочем, с возрастом у пожилых людей глаза опять меняют цвет - бледнеют, и происходит это по причине депигментации, связанной с дистрофическими и склеротическими процессами в организме.

Цвет глаз может измениться из-за некоторых болезней. Например, к потемнению радужной оболочки глаза могут привести меланомы, гемосидероз, сидероз и хроническое воспаление радужки, а синдромы Дуэйна, лимфома и лийкемия могут повлечь осветление радужной оболочки глаз. К изменению цвета глаз могут привести и другие заболевания, но это уже тема для отдельного разговора.

Немного о наследовании цвета глаз

Вопрос наследования цвета глаз очень сложный. Учёные давно уже выяснили, что за наследование цвета глаз отвечает не один, а как минимум шесть генов, и при этом правило доминирования тёмного цвета над светлым тут не срабатывает, так как оказалось, что голубой цвет не является проявлением рецессивного состояния гена.

Существует три основных фактора, оказывающих важное влияние на цвет глаз:

  • плотность клеток в строме радужки;
  • количество меланина в строме радужки;
  • количество пигмента в пигментном эпителии радужки.

Предсказать на все 100% цвет глаз будущего ребёнка невозможно. Можно лишь предположить, и то с вероятностью приблизительно в 90% (10% остаётся на «капризы природы»).

Основная палитра цвета глаз

Определить цвет глаз не так просто, как кажется. Ни для кого не секрет, что глаза у людей разного цвета, и их палитра не ограничивается шестью цветами - чёрным, коричневым, серым, голубым, синим, зелёным. Но мы редко когда обращаем на это внимание. Радужная оболочка глаз редко бывает окрашена равномерно в один цвет. Чаще она представляет собой сочетание нескольких оттенков или даже цветов (например, у европейцев это могут быть голубой или серый, с зелёными, жёлтыми или коричневыми прожилками). Более того, на цвет глаз влияет и наше настроение, и их «рисунок», который, как показали исследования учёных, является уникальным (как, например, отпечатки пальцев) и положен в основу иридодиагностики (диагностики заболеваний по радужной оболочке глаза) и некоторых электронных систем распознания личности (сканер сетчатки глаза).

Как же тогда определить цвет глаз?

Для этого есть три правила:

  1. Говоря о цвете глаз, мы подразумеваем оттенок радужной оболочки, который зависит от красящего пигмента и от его количества в ней. Кроме того, толщина радужной оболочки тоже имеет значение. Она имеет свойство сужаться и расширяться под действием света, и поэтому при изменении размера зрачка пигмент в радужке либо концентрируется, либо рассредоточивается (глаза либо темнеют, либо светлеют). При переживании сильных эмоций наши зрачки расширяются, и глаза кажутся темнее, поэтому при определении цвета глаз старайтесь быть спокойными, расслабиться.
  2. Определять цвет глаз лучше при дневном свете, подойдя к окну. Дневной свет не искажает цвет, поэму можно более точно определить не просто цвет, но и его оттенок.
  3. Одежда не должна быть ярких насыщенных цветов - это может придать глазам дополнительный оттенок. Поэтому лучше, чтобы одежда по цвету была близка к цвету кожи или была пастельных оттенков.

Итак, в одежде, близкой по цвету кожи, в спокойном и расслабленном состоянии подойдите к окну и внимательно рассмотрите свои глаза в зеркало. Если у вас нет проблем со зрением (например, дальтонизма), то вы с лёгкостью определите оттенок радужной оболочки глаз.

Голубой

Этот цвет, как мы уже упоминали, - результат мутации в гене HERC2, произошедшей ещё на заре человечества. Из-за этой мутации у обладателей светлых глаз снижена выработка меланина в радужной оболочке, и при этом повышена плотность коллагеновых волокон стромы, которые имеют беловатый или сероватый оттенок, что делает их светлее синих. Голубые глаза широко распространены среди европейцев, а особенно среди жителей Северной Европы и стран Балтики (например, в Дании голубоглазые составляют почти 92% населения, в Эстонии - почти 99%, а в Германии - около 75%). На северном американском континенте среди европейской расы обладателями голубых глаз являются приблизительно 30%. Голубоглазых людей можно встретить и среди представителей Центральной Азии и Ближнего Востока. Не редкость голубые глаза и среди евреев-ашкеназов (53%).

Среди известных личностей обладателями голубых глаз являются актрисы Лив Тайлер и Кристина Хендрикс, музыкант Стинг. Серо-голубые глаза были у Альберта Энштейна, а Наполеон обладал именно голубыми глазами.

Синий

Это более яркий и насыщенный голубой цвет (такие глаза обычно бывают у новорождённых), и объясняется это меньшей плотностью коллагеновых волокон радужки, чем у голубых глаз, и меньшим содержанием в ней меланина. По сути дела, в радужной оболочке глаза вообще нет ни синих, ни голубых пигментов, и синий (голубой) цвет - результат рассеянного цвета в строме. Чем меньше плотность волокон стромы, тем насыщеннее кажется синий цвет. Синий цвет глаз - довольно редкое явление, и поэму они производят большее впечатление, чем голубые (наверное, потому, что более заметны?).

Среди тех, кому повезло иметь синие глаза, есть известные личности - американский актёр Брэд Пит, бывшая премьер-министр Великобритании Маргарет Тэтчер.

Серый

Для некоторых это почти такой же цвет, как и голубой (и они действительно похожи), но если при голубых глазах плотность стромы плотная, то при серых она ещё немного плотнее - глаза выглядят серо-голубыми, серыми. Серыми глазами могут похвастаться жители Северной и Восточной Европы. Так, например, в середине прошлого века более половины населения России имели именно серый цвет глаз. В наши дни процентное соотношение сероглазых жителей этого региона практически не изменилось. Людей с серыми глазами можно также встретить в некоторых регионах Северо-Западной Африки, в Афганистане, Пакистане и в Иране.

Серый цвет глаз имеют такие известные спортсмены, как шахматист Гарри Каспаров, бегун Николай Борзов, самбист и дзюдоист Фёдор Емельяненко. Серые глаза и у известной певицы Аллы Пугачёвой.

Зелёный

Самый редкий цвет глаз. Всего 2% населения планеты могут похвастаться зелёными глазами , и живут они чаще всего в Центральной и Северной Европе (Исландия, Нидерланды), причем большая их часть - это женщины. Объясняется зелёный цвет глаз небольшим количеством меланина в оболочке и наличием во внешнем её слое жёлтого или светло-коричневого пигмента - липофусцина. В совокупности с голубым цветом глаза кажутся зелёными, однако окраска радужной оболочки при этом неравномерная и имеет много разнообразных оттенков. Возможно, в формировании этого цвета глаз играет роль ген рыжих волос.

Представителями зеленоглазых являются такие актрисы, как Анжелина Джоли, Деми Мур, Оливия Уайд, а также балерина Анастасия Волочкова.

Янтарный

Этот цвет имеет монотонную светлую жёлто-коричневую окраску, а иногда может иметь золотисто-зелёный или красновато-медный оттенок. Обусловлено это пигментом-липофусцином, который также содержится и в зелёных глазах. Янтарный цвет делят на два тона - светлый (жёлто-коричневый) и тёмный (красно-коричневый и тёмно-коралловый). Как бы то ни было, но такой цвет глаз всегда вызывает интерес: он очень заметен и завораживает. По утверждению историков, таким цветом глаз обладали Сталин и Ленин - две неоднозначные личности, повлиявшие на судьбы миллионов людей.

Желтый

Крайне редкий цвет для глаз, и возникает он в тех случаях, когда сосуды радужной оболочки содержат очень бледный липофусцин. К сожалению, в большинстве случаев такой цвет глаз связан с заболеваниями почек.

Оливковый (ореховый, болотный, зелёно-карий, пивной).

Как правило, это результат смешения цветов. Во внешнем слое радужки таких глаз довольно умеренное содержание меланина - отсюда и получается ореховый цвет (комбинация коричневого и голубого или синего). В отличии от янтарного, окраска глаз не монотонна, а довольно разнородна. Глядя в такие глаза, не понимаешь, какого же они цвета? С одной стороны, тёмные, но не карие; в то же время не зелёные и не серые. Окраска неоднородна. Более того, в зависимости от освещения они могут меняться - от золотистого до коричнево-зелёного или коричневого. Представителями болотных или оливковых глаз являются Эмма Уотс и Джулия Робертс.

Карие глаза

В данном случае в радужной оболочке глаз содержится много меланина, что приводит к поглощению как низкочастотного, так и высокочастотного света (глаз легко справляется с большим количеством света), а в сумме отражённого света даёт коричневый цвет. Карие глаза распространены среди жителей Азии, Австралии, Африки, Океании, Северной и Южной Америки. Известными представителями кареглазого человечества являются Фидель Кастро, Че Гевара, Уго Чавес, Александр Лукашенко. Карие глаза были у художников Сальвадора Дали, Рембрандта, Шишкина, хоккеиста Валерия Харламова, братьев-боксёров Виталия и Владимира Кличко.

Чёрные глаза

Радужка таких глаз имеет весьма высокую концентрацию меланина, и поэтому падающий на них свет практически полностью поглощается. Помимо этого, даже цвет глазного яблока может иметь желтоватый или сероватый оттенок. Чёрный цвет глаз распространён на территории Южной, Восточной и Юго-Восточной Азии, а также присущ представителям монголоидной и негроидной расы. У представителей этих народов дети сразу рождаются с тёмной радужкой. Чёрными глазами обладают американская актриса Сальма Хаек, японский художник Сэссю, японский композитор Акутагава.

Врождённые нарушения

Однако некоторым людям бывает сложно определить цвет своих глаз из-за некоторых врождённых нарушений (отклонений).

Случается так, что у человека полностью или частично отсутствует радужная оболочка, и такое явление носит название аниридия.

Крайне редко (в среднем 1 человек на 20 тысяч) встречается и такое отклонение, как альбинизм, при котором глаза могут быть красного цвета. Это связано с отсутствием меланина в обоих слоях радужки глаза, и в таком случае цвет глаза определяется цветом крови в сосудах радужки. В некоторых случаях смешение синего цвета стромы и красного цвета могут давать фиолетовый.

Гетерохромия - различие в окраске радужных оболочек глаз, которое может быть как полным, так и частичным (секторным). В таких случаях цвет глаз может отличаться друг от друга полностью (глаза разного цвета) или часть глазной радужки отличается от остального её «окраса». Гетерохромия может быть как врождённой, так и приобретённой - как следствие заболевания или травмы.

Около 1% жителей земли имеют разного цвета радужки левого и правого глаза. Ярким примером подобной особенности могут быть американская актриса украинского происхождения Мила Кунис. Наблюдается такое отклонение и у другой американской актрисы - Деми Мур.

И напоследок

Мы уже говорили, что в течение жизни цвет глаз способен меняться. Однако происходить это может не только с возрастом, но и в других случаях, например:

  • на сильном холоде;
  • при смене искусственного и дневного света;
  • при смене одежды.

Наиболее подвержены таким изменениям глаза светлых оттенков - голубые, серые, зелёные.

Несколько интересных фактов:

  • Белки глаз помогают определить направление взгляда собеседника, его внутренний настрой.
  • Человеческий глаз различает 7 основных цветов (цвета радуги) и до 10000 их оттенков.
  • Чихнуть с открытыми глазами не получится!

Наши глаза - это не только зеркало наших душ, но и огромный подарок нам от матушки-природы - наше «окно» в красочный мир со всеми его красотами.

Берегите глаза и будьте здоровы!

Самое интересное для будущих родителей - думать, девочка или мальчик родится, чей носик у малыша и какие у него будут глазки - синие, как у мамы, карие, как у дедушки, или, может быть, зеленые, как у прабабушки? С полом как-то попроще, на УЗИ, если маме захочется, с большой долей вероятности скажут, кто родится, а как быть с цветом глаз? Ведь так не терпится поскорее представить, каким родится кроха! С внешностью все не так просто, а вот "зеркало души"... Можно предположить цвет глаз ребенка. Таблица для определения оттенка радужной оболочки существует и поможет в этом.

Глаза новорожденного

Какими будут по цвету очи крохи, закладывается в первом триметре беременности, точнее к его концу, на одиннадцатой неделе. Но практически все без исключения малютки рождаются с лишь изредка бывают темноокие новорожденные. Это не значит, что цвет не поменяется. Примерно к году, иногда даже к трем-пяти, глазки становятся такими, какими задумала их природа, или, если хотите, какие гены преобладают у малыша. Меняется цвет глаз у ребенка как раз к этому периоду жизни, начиная месяцев с 6-9. Лишь у кареглазых он станет постоянным в первые месяцы. Бывает, что малыш рождается с разными по цвету глазами. Такое явление встречается примерно в одном проценте случаев из ста и называется гетерохромией.

Меланин, отвечающий за цвет глазок и выделяющийся при попадании света, в животике у мамы попросту не вырабатывается. Этим и объясняется, почему у всех новорожденных одинаковые. Так что, не мучайте себя, пытаясь разглядеть цвет очей вашего ненаглядного крохи. Наберитесь терпения, скоро увидите, какой он у малыша.

Цвет глаз у ребенка и генетика

Многие помнят, как на уроках по биологии говорили, что карий цвет глаз доминирует над остальными. Это, конечно, верно, но если даже глаза и мамы, и папы будут такими, все равно остается небольшой шанс родить ребенка зеленоглазого или с голубым цветом радужной оболочки. Так что в сторону ревность, включаем мозги и начинаем разбираться, почему, что и зачем. Ведь не секрет, что некоторые пары распадаются как раз потому, что у кареглазых родителей рождается светлоокий ребенок.

Конечно, опираясь на науку, можно разобраться в генетике. Ведь именно она дает ответ на вопрос о том, какой цвет глаз у ребенка будет. Существует согласно которому глаза, как и волосы, наследуются по принципу преобладания генов, отвечающих за темный цвет. Грегор Мендель - ученый-монах более чем сто лет назад открыл этот закон наследования. Например, у темненьких родителей и дети, с большой долей вероятности, будут такими же, а у светлых - наоборот. Ребенок, рожденный от разных по фенотипу людей, может быть средним по цвету волос и глаз - между тем и другим. Естественно, что бывают и исключения, но это редкость.

Определение цвета глаз

Все описанное выше можно представить в виде таблицы. По ней каждый предположительно определит цвет очей малыша.

Как определить цвет глаз будущего ребенка. Таблица
цвет глаз родителей цвет глаз малыша
карие зеленые карие зеленые
++ 75% 18,75% 6,25%
+ + 50% 37,5% 12,5%
+ + 50% 0% 50%
++ 75% 25%
+ + 0% 50% 50%
++ 0% 1% 99%

Понять несложно, каким будет цвет глаз ребенка. Таблица,согласно которой можно это сделать, подтверждает закон Менделя, но остаются все те же исключения из правил в виде незначительного процента. Как природа распорядится, никому не известно.

Кстати сказать, то, что темный цвет является доминирующим на генном уровне, привело к преобладанию кареглазых людей во всем мире. По некоторым данным, светлый цвет глаз у ребенка в будущем совсем не будет встречаться.

Голубоглазых людей, по утверждению ученых, еще десять тысяч лет назад не было вообще. У всех, имеющих такой оттенок радужной оболочки, один предок, по мнению исследователей.

Имеет меньшее количество людей, чем какой бы то ни было. Из-за того что только каждый пятидесятый житель имеет этот оттенок, их в разные времена и у различных народов по традиции то сжигали на костре, то восхваляли и относились с почтением, наделяя колдовскими способностями и в том и в другом случае. А кареглазым и сегодня приходится слышать, что у них дурной глаз и они могут кого-то сглазить.

Среди различных вариаций трех основных оттенков радужной оболочки очень редко можно встретить людей с красными от кровеносных сосудов глазами. Хоть и выглядят они неприятно и даже страшновато, но не виноваты в том, что родились альбиносами. Меланин, благодаря которому и отличаются по цвету радужные оболочки глаз, у таких людей практически отсутствует.

Глаза - зеркало души

И еще один , кто-то обращал на него внимание, кто-то нет, но цвет глаз у большинства, если не сказать у всех, светлооких людей меняется в зависимости от настроения, самочувствия, цвета одежды, в стрессовых ситуациях.

Не исключение и цвет глаз ребенка. Таблица, приведенная выше, не расскажет об этом, да и конкретных правил здесь нет. Все индивидуально. В основном, когда кроха голодный, глазки темнеют. и капризничает - становятся мутными. Если плачет, цвет ближе к зеленому, а когда всем доволен - к голубому. Может быть, именно поэтому говорят, что глаза - зеркало души.

Многие родители будущего малыша и их родственники пытаются определить цвет глаз ребенка. Таблица, созданная для этого, помогает им, конечно. Но ведь важнее, чтобы кроха родился здоровым. И гораздо интереснее наблюдать за тем, как будет меняться младенец и какими станут его глазки, носик, волосики, а не знать заранее. Малютка подрастет, и увидите, светлоокий он или наоборот.

Определяет цвет глаз у ребёнка генетика и ничего кроме неё. Эта наука позволяет хотя бы с какой-то долей процента, узнать многое о своём малыше, как он будет выглядеть, и даже какие болезни унаследует. Но точно на все 100%, к сожалению, мамочкам и папочкам не удастся узнать, голубыми, карими или зелёными глазками на вас будет смотреть обожаемая кроха.

Цвет глаз новорождённого ребёнка

Все детки рождаются с голубыми глазами. И это далеко не миф, хотя имеется процент малышей, которые рождаются с тёмной радужной оболочкой глаза. Всё зависит от количества меланина – пигмента, который насыщает нашу кожу красивым смуглым оттенком, а глаза тёмным шоколадным цветом. Детки, рождаясь, меланина практически не имеют (имеется очень малое количество пигмента), поэтому светлый цвет кожи и голубые глаза – норма и стандарт. Хотя, если оба родителя смуглые и в роду все темноглазые, ребенок может родиться с глазами светло-коричневого цвета, так как у них имеется большее количество пигмента в радужке, чем у светлоглазых. Со временем меланин появляется и накапливается всё больше и больше в радужной оболочке глаз, и они могут изменить свой цвет.

Существуют и исключения, например, если пигмент отсутствует полностью, малыш может родиться с красными глазами, как у альбиносов, потому что его капилляры полностью просматриваются. Ещё одно исключение – заболевание гетерохромия, в этом случае деточка родится с глазами разного цвета, например, одним серым, другим зелёно-коричневым.

Когда меняется цвет глаз у ребёнка

Благодаря генетическим данным, многие малыши меняют оттенок глаз в пользу того, который заложен родителями (доминантным геном одного из родителей). Вернее он меняется сам, в возрасте около 9 месяцев, иногда раньше, но в основном позже.

Точный и окончательный цвет глаз у ребёнка можно увидеть в возрасте двух лет. У некоторых малышей глаза могут потемнеть даже в три – четыре года. Известны случаи, что уже во взрослом возрасте, в школе, например, детки приобретали другой цвет глаз, с ярко-голубых радужек они превращались в карие глаза. Когда накопиться достаточно меланина, тогда глаза и определяться с цветом.

В общем, цвет глаз определяет генетика, но если говорить именно о самом оттенке, то здесь играет роль количество меланина в радужной оболочке глаза, насколько его больше или меньше, зависит голубой, зелёный, или карий цвет будет у ребенка.

Какой будет цвет глаз у ребёнка

Не обязательно цвет глаз может измениться с серого оттенка на карий. Даже если родители гордые обладатели тёмно-коричневых глаз, кроха может унаследовать светлый оттенок от дальних родственников, например, прадедушки или прапрабабушки. Генетические тесты, анализы и задачи смогут, правда не на все 100%, могут приоткрыть тайну, какой цвет глаз у ребёнка будет после рождения.

Всё зависит от того, какого цвета глаза имеются у родителей. В их ДНК имеются доминантные и рецессивные гены, которые отвечают за цвет глаз и прочего, так вот, ген тёмного оттенка радужки – доминантный, то есть победитель, он сильней, а значит без труда победит рецессивный, слабый ген светлых глаз, голубых или светло-зелёных.

Существуют исключения, когда оба родители – кареглазые, но ребёнок наоборот – обладает светлым оттенком глаз. Ничего удивительного в этом нет, так как гены смешиваются поколениями, и один ген, может потеряться, а найтись именно в вашем малыше. Например, когда у светлокожей пары, рождается темнокожая кроха, а сделав все генетические анализы становиться ясным, что в роду у родителей, несколько поколений назад, был, например, темнокожий прапрадедушка.

Синий цвет глаз у ребёнка

Казалось бы, какая разница между синим и голубым цветом глаз, по большому счёту. Но наука и медицина, считают иначе. Давайте разберёмся немного подробней, глаз имеет внешний (эктодермальный) и внутренний (энтодермальный) слой радужной оболочки, внутренний – наполненный меланином, в большей или меньшей мере. А вот внешний, особенно у младенцев, содержит крохотную долю пигмента, и чем его меньше, а так же чем меньше плотность у эктодермального (внешнего) слоя радужки, тем ярче и светлее цвет глаз у ребёнка.

Но, не стоит заблуждаться, что глаз имеет волокна синего цвета, это не так. Когда свет падает на строму (слой ткани глаза, состоящий из волокон и сосудов) радужки глаза, он рассеивается, некоторые лучи, поглощаются энтодермальным слоем (внутренним, тем, что наполнен меланином), а некоторые отражаются, всё зависит от частоты лучей (высокочастотные и низкочастотные лучи). Таким образом, мы видим определённый цвет глаз у малыша, в данном случае – синий.

Серый или голубой цвет глаз у ребёнка

Серый и голубой цвет глаз у крохи так же обусловлен плотностью внешней оболочки радужки глаза. Чем плотнее размещены волокна (волокна внешнего слоя имеют светловатый оттенок) эктодермального слоя радужной оболочки, тем светлее оттенок они будут иметь. Светло-серые глаза – плотность волокон внешнего слоя очень высока.

Интересно, что голубые и серые глаза преимущественно встречаются у европейцев. Такой, на сегодня, простой и незатейливый оттенок глаз (имеется в виду голубой), появился в результате мутации наших генов. Произошло это около 8 тысяч лет назад, до этого людей с подобным голубым оттенком не было. Поэтому можно сказать, что голубой цвет глаз у ребёнка – нередкая редкость.

Зелёный цвет глаз у ребёнка

Полностью зелёных глаз у людей практически не бывает, это редкость, поскольку обычно, у малышей глазки с зелёным оттенком, болотного цвета или с вкраплениями коричневых точек, ещё такие глазки называют «медовыми». Но, какого бы оттенка зелёного цвета ни были глаза у ребёнка, это обусловлено маленьким количеством пигмента меланина.

Так же зелёный цвет глаз у ребёнка появляется из-за наличия во внешнем слое радужки ещё одного пигмента, имеющего коричневатый светлый оттенок, липофусцина. Из-за которого, вместе с рассеянным светом, и лучами, что поглощает внутренний пигментированный слой радужки глаза, получаются различные оттенки зелёного, от светлого, до тёмного, болотного.

Вкупе с зелёными глазами ребёнку, судя по генетической статистике, достаётся и ген, определяющий рыжий цвет волос. И ещё один факт: зеленоглазых девушек и женщин на планете намного больше, чем мужчин. Так же интересно, что липофусцин имеет особенность, как накапливаться, так и пропадать с клеток, вероятно, именно по этой причине глаза-хамелеоны у людей бывают только тогда, когда их базовый цвет глаз с зелёным оттенком.

Карий и чёрный цвет глаз у ребёнка

Карие глаза, поскольку ген, несущий в себе данную информацию оттенка, является доминантным, самые распространённые. В мире самое большое количество людей именно с карими глазами. Большое количество пигмента меланина в радужке глаза малыша, обусловливает такой оттенок.

Несколько слов о чёрном оттенке глазок у малыша, не карим, а именно чёрным. Это не редкое явление, но встречается часто у жителей Азии. Дело в том, что количество пигмента во внешнем слое радужки глаза очень много, с рождения у малышей цвет глаз становиться очень тёмным. Свет, когда падает на радужную оболочку и строму, полностью поглощается, поэтому других оттенков не видно.

Интересно, что самое большое количество кареглазых деток, рождается в странах с жарким климатом, например, в Южной Америке, Африке. Всё дело в генетике и такой интересной вещи, как эволюция. Природа нам дала отличный шанс подстроиться под погоду и климатические условия, поскольку в тёплых странах очень солнечно, человеку необходимо быть защищённым от ожогов и тепловых ударов, прочего. Эволюция любезно предоставила большое количество меланина народам, живущим на территориях жарких стран, тем самым обезопасила от палящего солнца. Но это не в 100% случаях, всегда имеется шанс, что цвет глаз у ребёнка будет таким, какого вы даже и не видели.

Есть даже жёлтые, фиолетовые глазки у малышей. Фиолетовый оттенок – очень редкий, практически не встречается, такая интересная аномалия обусловлена, практически всегда, альбинизмом. Это касается и красноглазых новорождённых ребятишек, через обесцвеченную радужку и из-за полного отсутствия меланина, просвещаются сосудики и капилляры. Поэтому людям с альбинизмом сложно смотреть на солнце, больно и даже опасно.

Это интересно:

Цвет глаз может меняться. Чаще всего это происходит: на сильном холоде; при смене искусственного света на дневной; при смене цвета одежды. Наиболее подвержены таким колебаниям глаза голубых, серых и зеленых оттенков.

Около 1 % людей на Земном шаре имеют разный цвет радужки левого

и правого глаза.

В среднем 1 человек на 20 тысяч рождается, так называемым, альбиносом.

Радужная оболочка человеческого глаза индивидуальна. По ней можно определять личность, как по отпечаткам пальцев.

Белки глаз помогают лучше определять внутренний настрой и направление взгляда собеседника.

Есть всего 7 основных цветов, которые различает глаз человека. Эта цвета радуги: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Помимо основных цветов, человек может различать до 100000 оттенков.

У вас не получиться чихнуть с открытыми глазами!

Природа и гены награждают нас определенным цветом глаз. Иногда мы особо не обращаем внимание какие глаза, привыкаем к цвету, который с рождения. Много людей, особенно мужчин, если спросить какой у них цвет глаз, затруднятся ответить, потому что не акцентируют особого внимания на такие вопросы. Но женщины, народ, более требовательный к себе, и часто возникают такие желания, которым на первый взгляд нереально исполнится, или очень мало идей для их воплощения. И последнее время часто спрашивают как поменять цвет глаз.

Люди всегда хотят подкорректировать природу, то что передано генами, и с каждым днем изобретают и воплощают в жизнь разные методы, которые помогают быть и более совершенными и красивыми. Если раньше, казалось, что только с помощью линз можно поменять цвет глаз, то сейчас количество способов намного увеличилось, и каждый человек может индивидуально подобрать какой он хочет для себя. Так как по цене эти способы очень сильно отличаются: от бесплатного и до нескольких тысяч долларов.

Но бывает что изменение цвета глаз у взрослого человека начинает происходить само по себе. В этом случае нужно обратиться к врачу, так как это могут быть признаки таких заболеваний, как: болезнь Хантингтона, гетерохромия, пигментарная глаукома.

____________________________

Способы, как поменять цвет глаз

  • Способ 1. Одним со способов есть смена цвета глаз с помощью макияжа. Это достаточно простой и распространенный способ, если хочется чуть изменить оттенок глаз. Многие женщины в таком случае обращаются к профессиональным визажистам, которые хорошо разбираются в цветовой гамме и правильно подбирают палитру теней для определенного цвета глаз. Существует теория, по которой есть такие оттенки, что рядом с определенным цветом, делают основной цвет намного темнее. Можно обратить внимание на то, что в разную погоду, утром или вечером, наши глаза бывает меняются в цвете. На солнце карие глаза приобретают золотистый оттенок, сероватый-при искусственном свете. Голубые на фоне фиолетового, становятся бирюзовыми.

Чтобы изменить цвет глаз с помощью макияжа можно обратится к подсказкам, которые предоставляет природа. Нужно при нанесении макияжа использовать диаметрально противоположные цвета спектрального круга. Если использовать зеленый цвет для макияжа, визуально можно сделать голубыми или, наоборот, золотистыми. Голубые глаза сделать зелеными помогают фиолетовые и сливовые оттенки. А если пользоваться оранжевой палитрой цветов, можно с серых глаз сделать голубые.

  • Способ 2. Визуально изменить оттенок можно и с помощью правильно подобранной одежды. Если присутствует голубой цвет в наряде, то серые глаза будут казаться голубыми. А чтобы тусклые зеленые глаза сделать яркими и выразительными, одежда должна быть сиреневого или зеленого цвета.
  • Способ 3. Бывает что цвет глаз сам по себе меняется от разных эмоций, и позитивных и негативных. Гнев, радость, страх, боль, глаза могут реагировать на любое чувство.
  • Способ 4. Наиболее распространенным способом также есть подбор оттеночных или цветных линз. Если глаза светлые, не будет никаких проблем подобрать именно оттеночные линзы, для темных такие не подойдут, так как не изменят цвет. Для них нужно подбирать цветные линзы, чтобы кардинально изменить цвет.

Правила, которые нужно соблюдать при ношении линз:

  • нужно не забывать что линзы имеют срок службы
  • носить их можно только несколько часов в сутки
  • требуется специальный уход определенными средствами
  • соблюдать гигиену. Не одевать грязными руками
  • если все время чувствуете дискомфорт, и он не проходит, а привыкнуть не можете, лучше тогда линзами не пользоваться.
  • Способ 5. Если у вас светлые глаза, а вы хотите сделать темнее, можно использовать глазные капли на основе гормона-простагландина. Но это достаточно рискованный способ, так как могут проявиться побочные эффекты , и такие капли выписываются только по рецепту. Если долго ими пользоваться, может произойти снижение глазного яблока кислородом. Оттенок глаз изменится где-то через полтора месяца.
  • Способ 6. Смена цвета глаз делается также и лазерной коррекцией. Это достаточно дорогой способ, но на сто процентов можно добиться цвета, который вы хотите. Происходит удаление лишних пигментов лучами, и с карих глаз можно сделать голубые.

Недостатки лазерной процедуры:

  • весомый аргумент- это цена, где-то 5000–8000 тыс. долларов, что не дает возможности всем желающим ее сделать
  • побочные действия до конца не выявленные, эта процедура в стадии еще исследования
  • назад уже изменить цвет нельзя
  • есть шанс получить раздвоение в глазах и боязнь света.
  • Способ 7. Самой радикальной мерой является хирургическое вмешательство. Если раньше операции делались с целью восстановить зрение и убрать какие -то дефекты, то сейчас также устанавливается в глаз имплантат любого цвета, который вы выбираете. Плюс в том, что его можно удалить, то есть процесс обратимый, в отличие от лазерной процедуры.

Последствия, что могут произойти:

  • глаукома
  • катаракта
  • отслоение роговицы
Предлагаем вам узнать об удивительных свойствах нашего зрения - от способности видеть далекие галактики до возможности улавливать невидимые, казалось бы, световые волны.

Окиньте взглядом комнату, в которой находитесь – что вы видите? Стены, окна, разноцветные предметы – все это кажется таким привычным и само собой разумеющимся. Легко забыть о том, что мы видим окружающий нас мир лишь благодаря фотонам - световым частицам, отражающимся от объектов и попадающим на сетчатку глаза.

В сетчатке каждого из наших глаз расположено примерно 126 млн светочувствительных клеток. Мозг расшифровывает получаемую от этих клеток информацию о направлении и энергии попадающих на них фотонов и превращает ее в разнообразие форм, цветов и интенсивности освещения окружающих предметов.

У человеческого зрения есть свои пределы. Так, мы не способны ни увидеть радиоволны, излучаемые электронными устройствами, ни разглядеть невооруженным глазом мельчайшие бактерии.

Благодаря прогрессу в области физики и биологии можно определить границы естественного зрения. "У любых видимых нами объектов есть определенный "порог", ниже которого мы перестаем их различать", - говорит Майкл Лэнди, профессор психологии и нейробиологии в Нью-Йоркском университете.

Сперва рассмотрим этот порог с точки зрения нашей способности различать цвета - пожалуй, самой первой способности, которая приходит на ум применительно к зрению.


Наша способность отличать, например, фиолетовый цвет от пурпурного связана с длиной волны фотонов, попадающих на сетчатку глаза. В сетчатке имеются два типа светочувствительных клеток - палочки и колбочки. Колбочки отвечают за цветовосприятие (так называемое дневное зрение), а палочки позволяют нам видеть оттенки серого цвета при низком освещении - например, ночью (ночное зрение).

В человеческом глазе есть три вида колбочек и соответствующее им число типов опсинов, каждый из которых отличается особой чувствительностью к фотонам с определенным диапазоном длин световых волн.

Колбочки S-типа чувствительны к фиолетово-синей, коротковолновой части видимого спектра; колбочки M-типа отвечают за зелено-желтую (средневолновую), а колбочки L-типа - за желто-красную (длинноволновую).

Все эти волны, а также их комбинации, позволяют нам видеть полный диапазон цветов радуги. "Все источники видимого человеком света, за исключением ряда искусственных (таких, как преломляющая призма или лазер), излучают смесь волн различной длины", - говорит Лэнди.


Из всех существующих в природе фотонов наши колбочки способны фиксировать лишь те, которые характеризуются длиной волн в весьма узком диапазоне (как правило, от 380 до 720 нанометров) – это и называется спектром видимого излучения. Ниже этого диапазона находятся инфракрасный и радиоспектры – длина волн низкоэнергетических фотонов последнего варьируется от миллиметров до нескольких километров.

По другую сторону видимого диапазона волн расположен ультрафиолетовый спектр, за которым следует рентгеновский, а затем - спектр гамма-излучения с фотонами, длина волн которых не превышает триллионные доли метра.

Хотя зрение большинства из нас ограничено видимым спектром, люди с афакией - отсутствием в глазу хрусталика (в результате хирургической операции при катаракте или, реже, вследствие врожденного дефекта) - способны видеть ультрафиолетовые волны.

В здоровом глазе хрусталик блокирует волны ультрафиолетового диапазона, но при его отсутствии человек способен воспринимать волны длиной примерно до 300 нанометров как бело-голубой цвет.

В исследовании 2014 г. отмечается, что в каком-то смысле мы все можем видеть и инфракрасные фотоны. Если два таких фотона практически одновременно попадут на одну и ту же клетку сетчатки, их энергия может суммироваться, превратив невидимые волны длиной, скажем, в 1000 нанометров в видимую волну длиной в 500 нанометров (большинство из нас воспринимает волны этой длины как холодный зеленый цвет).

Сколько цветов мы видим?

В глазе здорового человека три типа колбочек, каждый из которых способен различать около 100 различных цветовых оттенков. По этой причине большинство исследователей оценивает количество различаемых нами цветов примерно в миллион. Однако восприятие цвета очень субъективно и индивидуально.

Джемесон знает, о чем говорит. Она изучает зрение тетрахроматов – людей, обладающих поистине сверхчеловеческими способностями к различению цветов. Тетрахроматия встречается редко, в большинстве случаев у женщин. В результате генетической мутации у них имеется дополнительный, четвертый вид колбочек, что позволяет им, по грубым подсчетам, видеть до 100 млн цветов. (У людей, страдающих цветовой слепотой, или дихроматов, всего два типа колбочек - они различают не более 10 000 цветов.)

Сколько нам нужно фотонов, чтобы увидеть источник света?

Как правило, колбочкам для оптимального функционирования требуется гораздо больше света, чем палочкам. По этой причине при низком освещении наша способность различать цвета падает, а за работу принимаются палочки, обеспечивающие черно-белое зрение.

В идеальных лабораторных условиях на тех участках сетчатки, где палочки по большей части отсутствуют, колбочки могут активироваться при попадании на них всего нескольких фотонов. Однако палочки справляются с задачей регистрации даже самого тусклого света еще лучше.


Как показывают эксперименты, впервые проведенные в 1940-х гг., одного кванта света достаточно для того, чтобы наш глаз его увидел. "Человек способен увидеть один-единственный фотон, - говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфордском университете. – В большей чувствительности сетчатки просто нет смысла".

В 1941 г. исследователи из Колумбийского университета провели эксперимент – испытуемых заводили в темную комнату и давали их глазам определенное время на адаптацию. Для достижения полной чувствительности палочкам требуется несколько минут; именно поэтому, когда мы выключаем в помещении свет, то на какое-то время теряем способность что-либо видеть.

Затем в лицо испытуемым направляли мигающий сине-зеленый свет. С вероятностью выше обычной случайности участники эксперимента регистрировали вспышку света при попадании на сетчатку всего 54 фотонов.

Не все фотоны, достигающие сетчатки, регистрируются светочувствительными клетками. Учитывая это обстоятельство, ученые пришли к выводу, что всего пяти фотонов, активирующих пять разных палочек в сетчатке, достаточно, чтобы человек увидел вспышку.

Самый маленький и самый удаленный видимые объекты

Следующий факт может вас удивить: наша способность увидеть объект зависит вовсе не от его физических размеров или удаления, а от того, попадут ли хотя бы несколько излучаемых им фотонов на нашу сетчатку.

"Единственное, что нужно глазу, чтобы что-то увидеть, - это определенное количество света, излученного или отраженного на него объектом, - говорит Лэнди. – Все сводится к числу достигших сетчатки фотонов. Каким бы миниатюрным ни был источник света, пусть даже он просуществует доли секунды, мы все равно способны его увидеть, если он излучает достаточное количество фотонов".


В учебниках по психологии часто встречается утверждение о том, что в безоблачную темную ночь пламя свечи можно заметить с расстояния до 48 км. В реальности же наша сетчатка постоянно бомбардируется фотонами, так что один-единственный квант света, излученный с большого расстояния, просто затеряется на их фоне.

Чтобы представить себе, насколько далеко мы способны видеть, взглянем на ночное небо, усеянное звездами. Размеры звезд огромны; многие из тех, что мы наблюдаем невооруженным взглядом, достигают миллионов км в диаметре.

Однако даже самые близкие к нам звезды расположены на расстоянии свыше 38 триллионов километров от Земли, поэтому их видимые размеры настолько малы, что наш глаз не способен их различить.

С другой стороны, мы все равно наблюдаем звезды в виде ярких точечных источников света, поскольку испускаемые ими фотоны преодолевают разделяющие нас гигантские расстояния и попадают на нашу сетчатку.


Все отдельные видимые звезды на ночном небосклоне находятся в нашей галактике – Млечном Пути. Самый удаленный от нас объект, который человек в состоянии разглядеть невооруженным глазом, расположен за пределами Млечного Пути и сам представляет собой звездное скопление – это Туманность Андромеды, находящаяся на расстоянии в 2,5 млн световых лет, или 37 квинтильонов км, от Солнца. (Некоторые люди утверждают, что особо темными ночами острое зрение позволяет им увидеть Галактику Треугольника, расположенную на удалении около 3 млн световых лет, но пусть это утверждение останется на их совести.)

Туманность Андромеды насчитывает один триллион звезд. Из-за большой удаленности все эти светила сливаются для нас в едва различимое пятнышко света. При этом размеры Туманности Андромеды колоссальны. Даже на таком гигантском расстоянии ее угловой размер в шесть раз превышает диаметр полной Луны. Однако до нас долетает настолько мало фотонов из этой галактики, что она едва различима на ночном небе.

Предел остроты зрения

Почему же мы не способны разглядеть отдельные звезды в Туманности Андромеды? Дело в том, что у разрешающей способности, или остроты, зрения есть свои ограничения. (Под остротой зрения подразумевается способность различать такие элементы, как точка или линия, как отдельные объекты, не сливающиеся с соседними объектами или с фоном.)

Фактически остроту зрения можно описывать так же, как и разрешение компьютерного монитора - в минимальном размере пикселей, которые мы еще способны различать как отдельные точки.


Ограничения остроты зрения зависят от нескольких факторов - таких как расстояние между отдельными колбочками и палочками сетчатки глаза. Не менее важную роль играют и оптические характеристики самого глазного яблока, из-за которых далеко не каждый фотон попадает на светочувствительную клетку.

В теории, как показывают исследования, острота нашего зрения ограничивается способностью различать около 120 пикселей на угловой градус (единицу углового измерения).

Практической иллюстрацией пределов остроты человеческого зрения может являться расположенный на расстоянии вытянутой руки объект площадью с ноготь, с нанесенными на нем 60 горизонтальными и 60 вертикальными линиями попеременно белого и черного цветов, образующими подобие шахматной доски. "По всей видимости, это самый мелкий рисунок, который еще в состоянии различить человеческий глаз", - говорит Лэнди.

На этом принципе основаны таблицы , используемые окулистами для проверки остроты зрения. Наиболее известная в России таблица Сивцева представляет собой ряды черных заглавных букв на белом фоне, размер шрифта которых с каждым рядом становится все меньше.

Острота зрения человека определяется по тому, на каком размере шрифта он перестает четко видеть контуры букв и начинает их путать.


Именно пределом остроты зрения объясняется тот факт, что мы не способны разглядеть невооруженным глазом биологическую клетку, размеры которой составляют всего несколько микрометров.

Но не стоит горевать по этому поводу. Способность различать миллион цветов, улавливать одиночные фотоны и видеть галактики на удалении в несколько квинтильонов километров – весьма неплохой результат, если учесть, что наше зрение обеспечивается парой желеобразных шариков в глазницах, соединенных с полуторакилограммовой пористой массой в черепной коробке.

От наблюдения далеких галактик за световые годы от нас до восприятия невидимых цветов, Адам Хэдхейзи на BBC объясняет, почему ваши глаза могут делать невероятные вещи. Взгляните вокруг. Что вы видите? Все эти цвета, стены, окна, все кажется очевидным, как будто так и должно быть здесь. Мысль о том, что мы все это видим благодаря частицам света - фотонам - которые отскакивают от этих объектов и попадают нам в глаза, кажется невероятной.

Эта фотонная бомбардировка всасывается примерно 126 миллионами светочувствительных клеток. Различные направления и энергии фотонов транслируются в наш мозг в разных формах, цветах, яркости, наполняя образами наш многоцветный мир.

Наше замечательное зрение, очевидно, обладает рядом ограничений. Мы не можем видеть радиоволны, исходящие от наших электронных устройств, не можем разглядеть бактерий под носом. Но с достижениями физики и биологии мы можем определить фундаментальные ограничения естественного зрения. «Все, что вы можете различить, имеет порог, самый низкий уровень, выше и ниже которого вы видеть не можете», - говорит Майкл Лэнди, профессор неврологии Нью-Йоркского университета.


Начнем рассматривать эти визуальные пороги сквозь призму - простите за каламбур - что многие ассоциируют со зрением в первую очередь: цвет.

Почему мы видим фиолетовый, а не коричневый, зависит от энергии, или длины волн, фотонов, падающих на сетчатку глаза, расположенную в задней части наших глазных яблок. Там находится два типа фоторецепторов, палочки и колбочки. Колбочки отвечают за цвет, а палочки позволяют нам видеть оттенки серого в условиях низкой освещенности, например, ночью. Опсины, или пигментные молекулы, в клетках сетчатки поглощают электромагнитную энергию падающих фотонов, генерируя электрический импульс. Этот сигнал идет через зрительный нерв к мозгу, где и рождается сознательное восприятие цветов и изображений.

У нас есть три типа колбочек и соответствующих опсинов, каждый из которых чувствителен к фотонам определенной длины волны. Эти колбочки обозначаются буквами S, M и L (короткие, средние и длинные волны соответственно). Короткие волны мы воспринимаем синими, длинные - красными. Длины волн между ними и их комбинации превращаются в полную радугу. «Весь свет, который мы видим, кроме созданного искусственно с помощью призм или хитроумных устройств вроде лазеров, представляет собой смесь разных длин волн, - говорит Лэнди».

Из всех возможных длин волн фотона наши колбочки обнаруживают небольшую полосу от 380 до 720 нанометров - то, что мы называем видимым спектром. За пределами нашего спектра восприятия есть инфракрасный и радиоспектр, у последнего диапазон волн составляет от миллиметра до километра длиной.


Над нашим видимым спектром, на более высоких энергиях и коротких длинах волн, мы находим ультрафиолетовый спектр, потом рентгеновские лучи и на вершине - гамма-лучевой спектр, длины волн которого достигают одной триллионной метра.

Хотя большинство из нас ограничены видимым спектром, люди с афакией (отсутствием хрусталика) могут видеть в ультрафиолетовом спектре. Афакия, как правило, создается вследствие оперативного удаления катаракты или врожденных дефектов. Обычно хрусталик блокирует ультрафиолетовый свет, поэтому без него люди могут видеть за пределами видимого спектра и воспринимать длины волн до 300 нанометров в голубоватом оттенке.

Исследование 2014 года показало, что, условно говоря, все мы можем видеть инфракрасные фотоны. Если два инфракрасных фотона случайно попадают в клетку сетчатки почти одновременно, их энергия объединяется, конвертируя их длину волны из невидимой (например, 1000 нанометров) в видимую 500-нанометровую (холодный зеленый цвет для большинства глаз).

Здоровый человеческий глаз имеет три типа колбочек, каждый из которых может различать порядка 100 разных цветовых оттенков, поэтому большинство исследователей сходятся во мнении, что наши глаза в общем могут различить примерно миллион оттенков. Тем не менее восприятие цвета — это довольно субъективная способность, которая варьируется от человека к человеку, поэтому определить точные цифры довольно сложно.

«Довольно трудно переложить это на цифры, - говорит Кимберли Джеймисон, научный сотрудник Калифорнийского университета в Ирвине. - То, что видит один человек, может быть лишь частью цветов, которые видит другой человек».


Джеймисон знает, о чем говорит, поскольку работает с «тетрахроматами» - людьми, обладающими «сверхчеловеческим» зрением. Эти редкие индивиды, в основном женщины, обладают генетической мутацией, которая подарила им дополнительные четвертые колбочки. Грубо говоря, благодаря четвертому набору колбочек, тетрахроматы могут разглядеть 100 миллионов цветов. (Люди с цветовой слепотой, дихроматы, имеют только два вида колбочек и видят примерно 10 000 цветов).

Сколько минимум фотонов нам нужно видеть?

Для того чтобы цветное зрение работало, колбочкам, как правило, нужно намного больше света, чем их коллегам-палочкам. Поэтому в условиях низкой освещенности цвет «гаснет», поскольку на передний план выходят монохроматические палочки.

В идеальных лабораторных условиях и в местах сетчатки, где палочки по большей части отсутствуют, колбочки могут быть активированы лишь горсткой фотонов. И все же палочки лучше справляются в условиях рассеянного света. Как показали эксперименты 40-х годов, одного кванта света достаточно, чтобы привлечь наше внимание. «Люди могут реагировать на один фотон, - говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфорде. - Нет никакого смысла в еще большей чувствительности».


В 1941 году исследователи Колумбийского университета усадили людей в темную комнату и дали их глазам приспособиться. Палочкам потребовалось несколько минут, чтобы достичь полной чувствительности - вот почему у нас возникают проблемы со зрением, когда внезапно гаснет свет.

Затем ученые зажгли сине-зеленый свет перед лицами испытуемых. На уровне, превышающем статистическую случайность, участники смогли зафиксировать свет, когда первые 54 фотона достигли их глаз.

После компенсации потери фотонов через всасывание другими компонентами глаза, ученые обнаружили, что уже пять фотонов активируют пять отдельных палочек, которые дают ощущение света участникам.

Каков предел самого мелкого и дальнего, что мы можем увидеть?

Этот факт может вас удивить: нет никакого внутреннего ограничения мельчайшей или самой далекой вещи, которую мы можем увидеть. Пока объекты любого размера, на любом расстоянии передают фотоны клеткам сетчатки, мы можем их видеть.

«Все, что волнует глаз, это количество света, которое попадает на глаз, - говорит Лэнди. - Общее число фотонов. Вы можете сделать источник света до смешного малым и удаленным, но если он излучает мощные фотоны, вы его увидите».

К примеру, расхожее мнение гласит, что темной ясной ночью мы можем разглядеть огонек свечи с расстояния 48 километров. На практике, конечно, наши глаза будут просто купаться в фотонах, поэтому блуждающие кванты света с больших расстояний просто потеряются в этой мешанине. «Когда вы увеличиваете интенсивность фона, количество света, которое вам необходимо, чтобы что-то разглядеть, увеличивается», - говорит Лэнди.


Ночное небо с темным фоном, усеянным звездами, являет собой поразительный пример дальности нашего зрения. Звезды огромны; многие из тех, что мы видим в ночном небе, составляют миллионы километров в диаметре. Но даже ближайшие звезды находятся минимум в 24 триллионах километров от нас, а потому настолько малы для нашего глаза, что их не разберешь. И все же мы их видим как мощные излучающие точки света, поскольку фотоны пересекают космические расстояния и попадают в наши глаза.

Все отдельные звезды, которые мы видим в ночном небе, находятся в нашей галактике - . Самый далекий объект, который мы можем разглядеть невооруженным глазом, находится за пределами нашей галактики: это галактика Андромеды, расположенная в 2,5 миллионах световых лет от нас. (Хотя это спорно, некоторые индивиды заявляют, что могут разглядеть галактику Треугольника в чрезвычайно темном ночном небе, а она находится в трех миллионах световых лет от нас, только придется поверить им на слово).

Триллион звезд в галактике Андромеды, учитывая расстояние до нее, расплываются в смутный светящийся клочок неба. И все же ее размеры колоссальны. С точки зрения видимого размера, даже будучи в квинтиллионах километрах от нас, эта галактика в шесть раз шире полной Луны. Однако наших глаз достигает так мало фотонов, что этот небесный монстр почти незаметен.

Насколько острым может быть зрение?

Почему мы не различаем отдельных звезд в галактике Андромеды? Пределы нашего визуального разрешения, или остроты зрения, накладывают свои ограничения. Острота зрения - это возможность различать такие детали, как точки или линии, отдельно друг от друга, чтобы те не сливались воедино. Таким образом, можно считать пределы зрения числом «точек», которые мы можем различить.


Границы остроты зрения устанавливают несколько факторов, например, расстояния между колбочками и палочками, упакованными в сетчатке. Также важна оптика самого глазного яблока, которое, как мы уже говорили, предотвращает проникновение всех возможных фотонов к светочувствительным клеткам.

Теоретически, как показали исследования, лучшее, что мы можем разглядеть, это примерно 120 пикселей на градус дуги, единицу углового измерения. Можете представить это как черно-белую шахматную доску 60 на 60 клеток, которая умещается на ногте вытянутой руки. «Это самый четкий паттерн, который вы можете разглядеть», - говорит Лэнди.

Проверка зрения, вроде таблицы с мелкими буквами, руководствуется теми же принципами. Эти же пределы остроты объясняют, почему мы не может различить и сосредоточиться на одной тусклой биологической клетке шириной в несколько микрометров.

Но не списывайте себя со счетов. Миллион цветов, одиночные фотоны, галактические миры за квантиллионы километров от нас - не так уж и плохо для пузырька желе в наших глазницах, подключенных к 1,4-килограммовой губке в наших черепах.

Loading...Loading...