Как называется человек с искусственными органами. Искусственные органы: прошлое, настоящее и будущее. Предполагаемые достоинства и недостатки Искусственной крови

Когда речь заходит о создании в лабораторных условиях человеческих органов, способных выполнять предписанные природой функции в организме человека, на лице большинства невольно возникает скептическая ухмылка. Как-то это больше похоже на фантастику.

Тем не менее, сегодня выращивание новых органов – самая что ни на есть объективная реальность, как и первые пациенты, жизни которых спасены, благодаря уникальнейшим операциям по пересадке органов. И с гордостью хочется заявить, что эти первопроходческие исследования в области регенеративной медицины осуществляются у нас на Кубани.

Рассказ человека, которому посчастливилось всю информацию получить из первых уст, хочется передать без купюр, что мы и делаем.

Паоло Маккиарини – это не только итальянское имя. Этот человек - истинный итальянец, с присущим его национальности темпераментом и эмоциональностью. Выражая свое восхищение, он с восторгом восклицает: «Фантастика!!!», тут же запросто переходя к отчаянному возгласу: «Они ждут, когда я умру!!!», упоминая о коллегах, испытывающих чувство досады от превосходства этого человека, и далее продолжая самозабвенно делиться перспективами новейших разработок, дающих надежду на спасение новых человеческих жизней.

Являясь участником сочинской конференции «Генетика старения и долголетия», на которую прибыли известнейшие специалисты в этой области со всего мира, Паоло Маккиарини оказался в более выигрышном положении, потому что преодолевать кордоны ему не пришлось, не смотря на то, что специалист он вселенского масштаба.


Уже несколько лет этот человек, является руководителем Центра регенеративной медицины Кубанского медицинского университета. Чтобы получить согласие профессора Маккиарини приехать на работу в Краснодар, правительство России выделило 150 миллионов рублей на создание центра.

Профессор с благодарностью отмечает, что работая в нашей стране, у него нет необходимости выискивать возможности для решения финансовых проблем, и все свое время и талант он максимально использует для спасения жизни людей.

Как создаются органы для трансплантации

Паоло Маккиарини является автором и разработчиком новаторской технологии выращивания трахеи, что, действительно, служит гордостью и главнейшим достижением регенеративной медицины. В 2008 году он впервые в истории человечества выполнил операцию по пересадке пациентке трахеи, выращенной из ее собственных стволовых клеток на донорском каркасе в биореакторе. Через год была проведена феноменальная операция, когда орган был выращен внутри тела пациента без применения биореактора. В 2011 году профессором Маккиарини была проведена беспрецедентная операция по пересадке человеческого органа полностью созданного в лабораторных условиях на искусственном каркасе, когда донорские органы не использовались.

Первый визит Маккиарини в Россию состоялся в 2010 году. Фонд «Наука за продление жизни», пригласил его провести мастер – класс по регенеративной медицине. В этом же году профессор Маккиарини впервые в России осуществил пересадку трахеи молодой женщине, пострадавшей в результате автомобильной аварии и потерявшей возможность разговаривать и нормально дышать. Пациентка восстановила здоровье, а итальянский доктор продолжил развивать регенеративную медицину в нашей стране, постоянно внедряя что-то передовое. Например, вместе с искусственно выращенной трахеей человеку была пересажена часть гортани.

‑ Трудно представить, как можно воспроизвести орган автономно, в отсутствие человека?

‑ По большому счету этого сделать нельзя. Имея клетки взрослого человека, вырастить целый орган, не имея орган донора, или искусственный каркас, не удастся.

Как происходил процесс подготовки материала, когда все только начиналось? Получали донорский орган. Донором мог быть человек или животное, чаще всего свинья. Этот орган опускался в специальный раствор, где растворялись мышечные ткани, таким образом, освобождая его от генетического материала. В результате оставался только каркас из соединительной ткани. Каждый орган имеет каркас, позволяющий ему сохранять форму, так называемый внеклеточный матрикс. Хотя, полученный таким образом каркас органа, изъятого у свиньи, с иммунной системой человека не конфликтует, тем не менее, есть опасность случайного проникновения какого-нибудь вируса, а для мусульман этот вариант не приемлем по религиозным соображениям. Так что орган, изъятый у погибшего человека, для получения каркаса подходил больше.

В 2011 году была внедрена новейшая технология создания искусственного каркаса, позволяющая обходиться без доноров, в принципе. Этот каркас представляет собой трубку, выполненную в соответствии с индивидуальными размерами органа пациента, изготовленную из упругого и пластичного нанокомпозитного материала. Это колоссальный рывок вперед. Получая искусственный каркас, отпадает необходимость в донорах, и сразу же снимаются все вопросы биоэтики, особенно когда дело касается детей.

‑ Но трубка это же не орган. Как его оживить и заставить работать?

‑ Для этих целей существует биореактор.

‑ Что-то наподобие биопринтера?

‑ С помощью биопринтера можно произвести простые ткани или сосуды, но не сложные органы. Биореактор предназначен для размножения и роста клеток, для этого там поддерживаются оптимальные условия. Клетки в биореакторе обеспечиваются питанием, они имеют возможность дышать и оттуда отводятся продукты обмена. Из костного мозга пациента выделяются его собственные клетки, которые и засеваются на каркас. Стволовые клетки такого вида способны преобразоваться в специальные клетки требуемых органов. В течение двух суток каркас обрастает этими клетками, и затем, воздействуя на них определенным образом, клетки превращаются к трахейные. Орган для трансплантации готов, и так как он выращен из собственных клеток пациента, то организмом не отторгается.

‑ Но ведь вы не планируете останавливаться только на трахее?

‑ В настоящее время ведется работа по исследованию на животных пищевода и диафрагмы, выращенных в лаборатории. Далее планируется совместно с Техасским институтом впервые в мире вырастить функционирующее сердце.

В Краснодарском крае существует специальный обезьяний питомник, предназначенный для медицинских исследований. Именно на них планируется провести испытания первого синтетического сердца. Учитывая, что в России многие проблемы решаются значительно легче, чем на Западе или в Штатах, есть большая уверенность, что Россия станет родиной первого человеческого сердца, выращенного в лаборатории.

‑ А какие органы самые востребованные?

‑ Нет предела совершенству и человеческой глупости. Как иначе отнестись к просьбе какого-то там президента общества гомосексуалистов снабдить его пенисом?

‑ Два пениса – это мысль!

‑ Да в том-то и дело, что там не то, что два, вообще почему-то ни одного не было. Вот только в пенисах я не силен. Кстати, с маткой тоже не смог помочь. Людей ведь мучают не только болезни, а всякие бредовые идеи тоже жить спокойно не дают.

Наш центр не работает с этими новомодными тенденциями. Что пробовали, так это вырастить яички, потому что проблема эта весьма актуальна из-за огромного количества детей, у которых обнаружен рак яичек или имеются врожденные отклонения. Однако, стволовые клетки не удалось преобразовать в клетки яичек и исследования завершились безрезультатно.

Естественно, основные усилия нашего центра направлены на выращивание тех органов, пересадка которых поможет спасти максимальное количество людей. Вот сейчас один из самых актуальных проектов – выращивание диафрагмы. Тысячи детей появляются на свет с отсутствием этого органа и поэтому умирают.

‑ Какие органы представляют самую большую сложность при выращивании?

‑ Сложнее всего дела обстоят с сердцем, почками и печенью, и не потому, что их трудно вырастить. На сегодняшний день вырастить можно практически все органы, а вот как заставить их правильно работать и вырабатывать необходимые организму вещества, это пока вопрос. Искусственные органы прекращают функционировать через несколько часов. Мы не знаем досконально принцип их работы, в этом вся причина.

А ведь вполне возможно, что стволовые клетки можно использовать для восстановления работы органов, требующих пересадки. Запустить внутренние процессы регенерации организма. Сегодня – это моя самая заветная мечта, и если удастся реализовать эту фантастическую идею, не потребуются больше операции и выращивание органов, ведь стволовые клетки есть у каждого человека.

‑ Сколько требуется времени на создание синтетического органа?

‑ Время пропорционально сложности органа. Для трахеи достаточно четырех дней, для сердца понадобится три недели.

‑ А можно ли вырастить мозг?

‑ Есть у меня такие намерения в перспективе.

‑ Ведь мозг имеет бесчисленное множество связей между нейронами. Как с ними быть?

‑ Не так все сложно, просто на проблему нужно смотреть под другим ракурсом. Полностью заменить мозг нельзя, и об этом речи нет. Но, если у человека травма головы, часть мозга повреждена, но человек остался в живых. Вот эту неработающую часть мозга нужно заменить субстратом, который призван вызвать рост нейронов, привлекая их из других участков мозга. Через некоторое время пострадавшая часть мозга постепенно включится в работу и обрастет связями. Сколько бы людей смогли избавить от проблем!

Мечты и разочарования

‑ Как реагируют коллеги на ваши успехи?

‑ Это тема непростая и грустно о ней говорить. Когда человек делает то, чего никто никогда в мире не делал, его всегда ожидают неприятности. Должно пройти много времени, прежде чем что-то сделанное впервые начнет восприниматься адекватно. До этого все стремятся критиковать, причем довольно жестко, считая порой мои действия, чуть ли не безумством. Зачастую люди очень ревностно относятся к успеху коллег: на меня устраивали нападки, стремились создать условия невыносимые для работы, порой применяя весьма грязные методы.

‑ Что в вашей личной жизни и профессиональной деятельности создает самые большие трудности?

‑ Если взять мою личную жизнь, то ее просто не существует. Работа – это не самое сложное. Труднее справиться с постоянными нападками коллег, их неуемной ревностью. Отсутствие элементарного уважения, и чисто человеческих отношений безмерно угнетает. Такое впечатление, что в мире не существует ничего, кроме конкуренции. В научных журналах мною опубликованы десятки статей, но такое впечатление, что их никто не читает, продолжая заявлять об отсутствии доказательств наших результатов. Все кругом настроены только на критику абсолютно по любому поводу.

Именно эта ревность создает для меня основные трудности. Я постоянно ощущаю дикое давление со всех сторон. Очевидно, это участь всех первопроходцев. Но я знаю, что мы спасем жизни людей и готов выдержать ради этого любые нападки.

‑ У вас есть мечта?

‑ Что касается моей личной жизни, то я мечтаю взять свою любимую собаку, забраться в лодку и уплыть на необитаемый остров, чтобы ничего не напоминало об этом мире. Что касается работы, то мечтаю спасать людей, не прибегая к операции, а лишь используя клеточную терапию. Вот это было бы, действительно, фантастикой!

‑ Когда технология создания искусственных органов станет доступна большинству населения развитых стран?

‑ Что касается трахеи, то технология выращивания этого органа практически доведена до совершенства. Если клинические испытания на Кубани будут продолжены, то через пару лет соберется достаточно фактов, доказывающих безопасность и эффективность разработанных нами методов, и их начнут применять повсеместно. Многое зависит от количества пациентов и ряда других факторов. Я продолжу разработки, связанные с выращиванием диафрагмы, пищевода и сердца. Надеюсь, что в России все пойдет значительно быстрее, так что немного терпения и скоро все узнаете сами.

В результате проведения четырех конкурсов, нацеленных на привлечение в российские вузы известных ученых мирового масштаба, 163 зарубежных и отечественных специалистов выиграли мегагранты, выделенные правительством России.

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы - вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

«Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40-50 раз в минуту. Обычный поршень для этого не подходит, в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь, и в других подобных устройствах используют мехи из гофрированного металла или пластика - сильфоны. Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

«Аппарат искусственного кровообращения» устроен аналогично. Его шланги подключаются к кровеносным сосудам хирургическим путем. Первая попытка замещения функции сердца механическим аналогом была сделана еще в 1812 году. Однако до сих пор среди множества изготовленных аппаратов нет полностью удовлетворяющего врачей.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия. Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается - и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца. Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Российский конструктор Александр Дробышев, несмотря на все трудности, продолжает создавать новые современные конструкции «Поиска», которые будут значительно дешевле зарубежных образцов.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» «Новакор» стоит 400 тысяч долларов. С ней можно целый год дома ждать операции. В кейсе-чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке наружный сервис компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома, с больным блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного - следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Аппараты «Искусственная почка» работают уже довольно давно и успешно применяются медиками. Еще в 1837 году, изучая процессы движения растворов через полупроницаемые мембраны, Т. Грехен впервые применил и ввел в употребление термин «диализ» (от греческого dialisis - отделение). Но лишь в 1912 году на основе этого метода в США был сконструирован аппарат, с помощью которого его авторы проводили в эксперименте удаление салицилатов из крови животных. В аппарате, названном ими «искусственная почка», в качестве полупроницаемой мембраны были использованы трубочки из коллодия, по которым текла кровь животного, а снаружи они омывались изотоническим раствором хлорида натрия. Впрочем, коллодий, примененный Дж. Абелем, оказался довольно хрупким материалом и в дальнейшем другие авторы для диализа пробовали иные материалы, такие как кишечник птиц, плавательный пузырь рыб, брюшину телят, тростник, бумагу…

Для предотвращения свертывания крови использовали гирудин - полипептид, содержащийся в секрете слюнных желез медицинской пиявки. Эти два открытия и явились прототипом всех последующих разработок в области внепочечного очищения.

Каковы бы не были усовершенствования в этой области, принцип пока остается одним и тем же. В любом варианте «искусственная почка» включает в себя полупроницаемую мембрану, с одной стороны которой течет кровь, а с другой стороны - солевой раствор. Для предотвращения свертывания крови используют антикоагулянты - лекарственные вещества, уменьшающие свертываемость крови. В этом случае происходит выравнивание концентраций низкомолекулярных соединений ионов, мочевины, креатинина, глюкозы, других веществ с малой молекулярной массой. При увеличении пористости мембраны возникает перемещение веществ с большей молекулярной массой. Если же к этому процессу добавить избыточное гидростатическое давление со стороны крови или отрицательное давление со стороны омывающего раствора, то процесс переноса будет сопровождаться и перемещением воды - конвекционный массообмен. Для переноса воды можно воспользоваться и осмотическим давлением, добавляя в диализат осмотически активные вещества. Чаще всего с этой целью использовали глюкозу, реже фруктозу и другие сахара и еще реже продукты иного химического происхождения. При этом, вводя глюкозу в больших количествах, можно получить действительно выраженный дегидратационный эффект, однако повышение концентрации глюкозы в диализате выше некоторых значений не рекомендуется из-за возможности развития осложнений. Наконец, можно вообще отказаться от омывающего мембрану раствора (диализата) и получить выход через мембрану жидкой части крови вода и вещества с молекулярной массой широкого диапазона.

В 1925 году Дж. Хаас провел первый диализ у человека, а в 1928 году он же использовал гепарин, поскольку длительное применение гирудина было связано с токсическими эффектами, да и само его воздействие на свертывание крови было нестабильным. Впервые же гепарин был применен для диализа в 1926 году в эксперименте X. Нехельсом и Р. Лимом.

Поскольку перечисленные выше материалы оказывались малопригодными в качестве основы для создания полупроницаемых мембран, продолжался поиск других материалов. И в 1938 году впервые для гемодиализа был применен целлофан, который в последующие годы длительное время оставался основным сырьем для производства полупроницаемых мембран.

Первый же аппарат «искусственная почка», пригодный для широкого клинического применения, был создан в 1943 году В.Колффом и X.Берком. Затем эти аппараты усовершенствовались. При этом развитие технической мысли в этой области вначале касалось в большей степени именно модификации диализаторов и лишь в последние годы стало затрагивать в значительной мере собственно аппараты. В результате появилось два основных типа диализатора. Так называемых катушечных, где использовали трубки из целлофана, и плоскопараллельных, в которых применялись плоские мембраны.

В 1960 году Ф.Киил сконструировал весьма удачный вариант плоскопараллельного диализатора с пластинами из полипропилена, и в течение ряда лет этот тип диализатора и его модификации распространились по всему миру, заняв ведущее место среди всех других видов диализаторов. Затем процесс создания более эффективных гемодиализаторов и упрощения техники гемодиализа развивался в двух основных направлениях. Конструирование самого диализатора, причем доминирующее положение со временем заняли диализаторы однократного применения, и использование в качестве полупроницаемой мембраны новых материалов. Диализатор - сердце «искусственной почки», и поэтому основные усилия химиков и инженеров были всегда направлены на совершенствование именно этого звена в сложной системе аппарата в целом. Однако, техническая мысль не оставляла без внимания и аппарат как таковой.

В 1960-х годах возникла идея применения так называемых центральных систем, то есть аппаратов «искусственная почка», в которых диализат готовили из концентрата - смеси солей, концентрация которых в 30-34 раза превышала концентрацию их в крови больного.

Комбинация диализа «на слив» и техники рециркуляции была использована в ряде аппаратов «искусственная почка», например американской фирмой «Travenol». В этом случае около 8 литров диализата с большой скоростью циркулировало в отдельной емкости, в которую был помещен диализатор, и в которую каждую минуту добавляли по 250 миллилитров свежего раствора и столько же выбрасывали в канализацию.

На первых порах для гемодиализа использовали простую водопроводную воду, потом из-за ее загрязненности, в частности микроорганизмами, пробовали применять дистиллированную воду, но это оказалось очень дорогим и малопроизводительным делом. Радикально вопрос был решен после создания специальных систем по подготовке водопроводной воды, куда входят фильтры для ее очистки от механических загрязнений, железа и его окислов, кремния и других элементов, ионообменные смолы для устранения жесткости воды и установки так называемого «обратного» осмоса.

Много усилий было затрачено на совершенствование мониторных систем аппаратов «искусственная почка». Так, кроме постоянного слежения за температурой диализата, стали постоянно наблюдать с помощью специальных датчиков и за химическим составом диализата, ориентируясь на общую электропроводность диализата, которая меняется при снижении концентрации солей и повышается при увеличении таковой. После этого в аппаратах «искусственная почка» стали применять ионо-селективные проточные датчики, которые постоянно следили бы за ионной концентрацией. Компьютер же позволил управлять процессом, вводя из дополнительных емкостей недостающие элементы, или менять их соотношение, используя принцип обратной связи.

Величина ультрафильтрации в ходе диализа зависит не только от качества мембраны, во всех случаях решающим фактором является трансмембранное давление. Поэтому в мониторах стали широко применять датчики давления: степень разрежения по диализату, величина давления на входе и выходе диализатора. Современная техника, использующая компьютеры, позволяет программировать процесс ультрафильтрации. Выходя из диализатора, кровь попадает в вену больного через воздушную ловушку, что позволяет судить на глаз о приблизительной величине кровотока, склонности крови к свертыванию. Для предупреждения воздушной эмболии эти ловушки снабжают воздуховодами, с помощью которых регулируют в них уровень крови. В настоящее время во многих аппаратах на воздушные ловушки надевают ультразвуковые или фотоэлектрические детекторы, которые автоматически перекрывают венозную магистраль при падении в ловушке уровня крови ниже заданного.

Недавно ученые создали приборы, помогающие людям, потерявшим зрение - полностью или частично.

Чудо-очки, например, разработаны в научно-внедренческой производственной фирме «Реабилитация» на основе технологий, использовавшихся ранее лишь в военном деле. Подобно ночному прицелу, прибор действует по принципу инфракрасной локации. Черно-матовые стекла очков на самом деле представляют собой пластины из оргстекла, между которыми заключено миниатюрное локационное устройство. Весь локатор вместе с очковой оправой весит порядка 50 граммов - примерно столько же, сколько и обыкновенные очки. И подбирают их, как и очки для зрячих, строго индивидуально, чтобы было и удобно, и красиво. «Линзы» не только выполняют свои прямые функции, но и прикрывают дефекты глаз. Из двух десятков вариантов каждый может выбрать для себя наиболее подходящий. Пользоваться очками совсем не трудно: надо надеть их и включить питание. Источником энергии для них служит плоский аккумулятор размерами с сигаретную пачку. Здесь же, в блоке, помещается и генератор. Излучаемые им сигналы, натолкнувшись на преграду, возвращаются назад и улавливаются «линзами-приемниками». Принятые импульсы усиливаются, сравниваются с пороговым сигналом, и, если есть преграда, тотчас звучит зуммер - тем громче, чем ближе подошел к ней человек. Дальность действия прибора можно регулировать, используя один из двух диапазонов.

Работы по созданию электронной сетчатки успешно ведутся американскими специалистами НАСА и Главного центра при университете Джона Гопкинса.

На первых порах они постарались помочь людям, у которых еще сохранились кое-какие остатки зрения. «Для них созданы телеочки, - пишут в журнале «Юный техник» С. Григорьев и Е. Рогов, - где вместо линз установлены миниатюрные телеэкраны. Столь же миниатюрные видеокамеры, расположенные на оправе, пересылают в изображение все, что попадает в поле зрения обычного человека. Однако для слабовидящего картина еще и дешифруется с помощью встроенного компьютера. Такой прибор особых чудес не создает и слепых зрячими не делает - считают специалисты, но позволит максимально использовать еще оставшиеся у человека зрительные способности, облегчит ориентацию.

Например, если у человека осталась хотя бы часть сетчатки, компьютер «расщепит» изображение таким образом, чтобы человек мог видеть окружающее хотя бы с помощью сохранившихся периферийных участков.

По оценкам разработчиков, подобные системы помогут примерно 2,5 миллионов людей, страдающих дефектами зрения. Ну а как быть с теми, у кого сетчатка практически полностью утрачена? Для них ученые глазного центра, работающего при университете Дюка (штат Северная Каролина), осваивают операции по вживлению электронной сетчатки. Под кожу имплантируются специальные электроды, которые, будучи соединены с нервами, передают изображение в мозг. Слепой видит картину, состоящую из отдельных светящихся точек, очень похожую на демонстрационное табло, что устанавливают на стадионах, вокзалах и в аэропортах. Изображение на «табло» опять-таки создают миниатюрные телекамеры, укрепленные на очковой оправе».

И, наконец, последнее слово науки на сегодняшний день - попытка методами современной микротехнологии создать новые чувствительные центры на поврежденной сетчатке. Такими операциями занимаются сейчас в Северной Каролине профессор Рост Пропет и его коллеги. Совместно со специалистами НАСА они создали первые образцы субэлектронной сетчатки, которая непосредственно имплантируется в глаз.

«Наши пациенты, конечно, никогда не смогут любоваться полотнами Рембрандта, - комментирует профессор. - Однако различать, где дверь, а где окно, дорожные знаки и вывески они все-таки будут.. »

Сотрудники лучшего частного детективного агентства в Москве профессионально решат ваши вопросы.

В середине двадцатого века в создание искусственных органов вряд ли кто мог поверить всерьёз, это было что-то из разряда фантастики. В наши дни в обозначенном направлении органов ведутся активные исследовательские работы, результаты которых мы уже можем наблюдать, однако остаётся и множество проблем, связанных с технической сложностью реализации данной идеи. Рассмотрим проблематику на примере создания искусственного сердца.

Одна из основных задач состоит в том, чтобы получить трехмерную ткань стенки сердца толщиной в палец или два. Получать монослои клеток и выращивать такие ткани мы уже можем. Проблема же в том, чтобы одновременно с мышечной тканью вырастить и сосудистое русло, через которое эта мышечная ткань будет снабжаться кислородом и питательными веществами и будут выводиться продукты метаболизма. Без сосудистого русла, без адекватного снабжения клетки в толстом слое погибнут. В тонком слое они могут питаться благодаря диффузии питательных веществ и кислорода, а в толстом слое диффузии уже недостаточно, и глубокие слои клеток будут погибать. Сейчас мы можем делать порядка трех слоев сердечных клеток, которые способны выжить.

Говоря о перспективных имплантатах, нужно помнить, что сосудистое русло имплантата необходимо будет подключить к сосудистому руслу, которое уже имеется в другой части сердца реципиента, то есть нужно вырастить сосудистое русло определенной анатомии. Выращивание целого сердца с множеством его отделов, клеток и собственной проводящей системой - это очень сложная многоклеточная задача. Точная копия человеческого сердца может быть получена приблизительно через 7–10 лет в хорошо оснащенных лабораториях развитых стран. Сердце - это не железа, которая вырабатывает гормоны, это насос. Нам нужно, чтобы кровь прокачивалась и не травмировалась при прокачке. Травмирование крови - это как раз проблема внешних насосов, которые используются при операциях на сердце. Когда их только разрабатывали, основной трудностью было то, что эритроциты и другие элементы крови этими насосами повреждались.

Современное развитие материалов может привести к тому, что будет создано механическое сердце, которое можно будет подшить, чтобы оно спокойно выполняло функции биологического сердца, которое дает человеку природа.

Если в целом говорить об импортируемых системах, то сердце здесь не самый удобный объект. Разумнее продвигать эксперименты на печеночных или почечных тканях. Например, полоски печени легко выживают сами по себе и относительно легко прирастают. Дать человеку, у которого печень поражена циррозом, новую часть печени, которая могла бы начать регенерировать и расти сама по себе, - это гораздо более разумное приложение сил.


В перспективе 5–10 лет станет понятно, стоит ли тратить время и силы на то, чтобы выращивать новое сердце, или проще будет поставить человеку механическое сердце, примеры успешного применения которого уже есть на данный момент.

Проблема с существующими вариантами искусственного сердца заключается в том, что для выполнения аналогичной работы они должны биться 100 тыс. раз в день и 35 млн. раз в год, поэтому быстро изнашиваются. Если бы речь шла о машине, то вопрос можно было бы легко решить – поменять масло и свечи зажигания, но в случае с сердцем все не так просто.

Уникальность нового устройства, примененного докторами из Техасского института сердца (Texas Heart Institute in Houston) как раз в том, что оно непрерывно гонит кровь и человеческий пульс прощупывается. Оно помогает справиться с образованием тромбов и кровотечением, предоставляет больше возможностей людям с тяжелой стадией сердечной недостаточности, которые ранее имели только два варианта: искусственное сердце или длительное ожидание в очереди на трансплантацию органа. Полученный аппарат предлагает третий вариант для больных с острой сердечной недостаточностью.

Для оценки прогресса в разработке и применениях искусственных органов можно обратиться также к опыту западных учёных и медиков.

Ученым из Западного резервного университета Кейза (Case Western Reserve University) удалось создать искусственное легкое, которое, в отличие от других подобных систем, использует воздух, а не чистый кислород. Прибор полностью копирует дыхательный орган. В его конструкцию включены аналоги кровеносных сосудов, выполненные из дышащей силиконовой резины. Подобно настоящим сосудам, они разветвляются и имеют разный размер: диаметр самых тонких из них составляет примерно четверть толщины человеческого волоса.

Хирурги Каролинского университета (Karolinska University Hospital) в Стокгольме впервые в мире провели операцию по трансплантации синтетической трахеи, созданной из стволовых клеток самого пациента. Данная технология позволяет обойтись без донора и избежать риска отторжения тканей, а изготовление органа достаточно быстрое и занимает от двух дней до недели.

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы – вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

«Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40 50 раз в минуту. Обычный поршень для этого не подходит: в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь и в других подобных устройствах используют мехи из гофрированного металла или пластика – сильфоны. Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

«Аппарат искусственного кровообращения» устроен аналогично. Его шланги подключаются к кровеносным сосудам хирургическим путем.

Первая попытка замещения функции сердца механическим аналогом была сделана еще в 1812 году. Однако до сих пор среди множества изготовленных аппаратов нет полностью удовлетворяющего врачей.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия.

Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается – и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца.

Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Российский конструктор Александр Дробышев, несмотря на все трудности, продолжает создавать новые современные конструкции «Поиска», которые будут значительно дешевле зарубежных образцов.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» «Новакор» стоит 400 тысяч долларов. С ней можно целый год дома ждать операции.

В кейсе чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке – наружный сервис: компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома с больным – блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного – следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Аппараты «Искусственная почка» работают уже довольно давно и успешно применяются медиками.

Еще в 1837 году, изучая процессы движения растворов через полупроницаемые мембраны, Т. Грехен впервые применил и ввел в употребление термин «диализ» (от греческого dialisis – отделение). Но лишь в 1912 году на основе этого метода в США был сконструирован аппарат, с помощью которого его авторы проводили в эксперименте удаление салицилатов из крови животных. В аппарате, названном ими «искусственная почка», в качестве полупроницаемой мембраны были использованы трубочки из коллодия, по которым текла кровь животного, а снаружи они омывались изотоническим раствором хлорида натрия. Впрочем, коллодий, примененный Дж. Абелем, оказался довольно хрупким материалом и в дальнейшем другие авторы для диализа пробовали иные материалы, такие как кишечник птиц, плавательный пузырь рыб, брюшину телят, тростник, бумагу.

Для предотвращения свертывания крови использовали гирудин – полипептид, содержащийся в секрете слюнных желез медицинской пиявки. Эти два открытия и явились прототипом всех последующих разработок в области внепочечного очищения.

Каковы бы ни были усовершенствования в этой области, принцип пока остается одним и тем же. В любом варианте «искусственная почка» включает в себя следующие элементы: полупроницаемая мембрана, с одной стороны которой течет кровь, а с другой стороны – солевой раствор. Для предотвращения свертывания крови используют антикоагулянты – лекарственные вещества, уменьшающие свертываемость крови. В этом случае происходит выравнивание концентраций низкомолекулярных соединений ионов, мочевины, креатинина, глюкозы, других веществ с малой молекулярной массой. При увеличении пористости мембраны возникает перемещение веществ с большей молекулярной массой. Если же к этому процессу добавить избыточное гидростатическое давление со стороны крови или отрицательное давление со стороны омывающего раствора, то процесс переноса будет сопровождаться и перемещением воды – конвекционный массообмен. Для переноса воды можно воспользоваться и осмотическим давлением, добавляя в диализат осмотически активные вещества. Чаще всего с этой целью использовали глюкозу, реже фруктозу и другие сахара и еще реже продукты иного химического происхождения. При этом, вводя глюкозу в больших количествах, можно получить действительно выраженный дегидратационный эффект, однако повышение концентрации глюкозы в диализате выше некоторых значений не рекомендуется из за возможности развития осложнений.

Наконец, можно вообще отказаться от омывающего мембрану раствора (диализата) и получить выход через мембрану жидкой части крови: вода и вещества с молекулярной массой широкого диапазона.

В 1925 году Дж. Хаас провел первый диализ у человека, а в 1928 году он же использовал гепарин, поскольку длительное применение гирудина было связано с токсическими эффектами, да и само его воздействие на свертывание крови было нестабильным. Впервые же гепарин был применен для диализа в 1926 году в эксперименте Х. Нехельсом и Р. Лимом.

Поскольку перечисленные выше материалы оказывались малопригодными в качестве основы для создания полупроницаемых мембран, продолжался поиск других материалов, и в 1938 году впервые для гемодиализа был применен целлофан, который в последующие годы длительное время оставался основным сырьем для производства полупроницаемых мембран.

Первый же аппарат «искусственная почка», пригодный для широкого клинического применения, был создан в 1943 году В. Колффом и Х. Берком. Затем эти аппараты усовершенствовались. При этом развитие технической мысли в этой области вначале касалось в большей степени именно модификации диализаторов и лишь в последние годы стало затрагивать в значительной мере собственно аппараты.

В результате появилось два основных типа диализатора, так называемых катушечных, где использовали трубки из целлофана, и плоскопараллельных, в которых применялись плоские мембраны.

В 1960 году Ф. Киил сконструировал весьма удачный вариант плоскопараллельного диализатора с пластинами из полипропилена, и в течение ряда лет этот тип диализатора и его модификации распространились по всему миру, заняв ведущее место среди всех других видов диализаторов.

Затем процесс создания более эффективных гемодиализаторов и упрощения техники гемодиализа развивался в двух основных направлениях: конструирование самого диализатора, причем доминирующее положение со временем заняли диализаторы однократного применения, и использование в качестве полупроницаемой мембраны новых материалов.

Диализатор – сердце «искусственной почки», и поэтому основные усилия химиков и инженеров были всегда направлены на совершенствование именно этого звена в сложной системе аппарата в целом. Однако техническая мысль не оставляла без внимания и аппарат как таковой.

В 1960 х годах возникла идея применения так называемых центральных систем, то есть аппаратов «искусственная почка», в которых диализат готовили из концентрата – смеси солей, концентрация которых в 30 34 раза превышала концентрацию их в крови больного.

Комбинация диализа «на слив» и техники рециркуляции была использована в ряде аппаратов «искусственная почка», например американской фирмой «Travenol». В этом случае около 8 литров диализата с большой скоростью циркулировало в отдельной емкости, в которую был помещен диализатор и в которую каждую минуту добавляли по 250 миллилитров свежего раствора и столько же выбрасывали в канализацию.

На первых порах для гемодиализа использовали простую водопроводную воду, потом из за ее загрязненности, в частности микроорганизмами, пробовали применять дистиллированную воду, но это оказалось очень дорогим и малопроизводительным делом. Радикально вопрос был решен после создания специальных систем по подготовке водопроводной воды, куда входят фильтры для ее очистки от механических загрязнений, железа и его окислов, кремния и других элементов, ионообменные смолы для устранения жесткости воды и установки так называемого «обратного» осмоса.

Много усилий было затрачено на совершенствование мониторных систем аппаратов «искусственная почка». Так, кроме постоянного слежения за температурой диализата, стали постоянно наблюдать с помощью специальных датчиков и за химическим составом диализата, ориентируясь на общую электропроводность диализата, которая меняется при снижении концентрации солей и повышается при увеличении таковой.

После этого в аппаратах «искусственная почка» стали применять ионо селективные проточные датчики, которые постоянно следили бы за ионной концентрацией. Компьютер же позволил управлять процессом, вводя из дополнительных емкостей недостающие элементы, или менять их соотношение, используя принцип обратной связи.

Величина ультрафильтрации в ходе диализа зависит не только от качества мембраны, во всех случаях решающим фактором является трансмембранное давление, поэтому в мониторах стали широко применять датчики давления: степень разрежения по диализату, величина давления на входе и выходе диализатора. Современная техника, использующая компьютеры, позволяет программировать процесс ультрафильтрации.

Выходя из диализатора, кровь попадает в вену больного через воздушную ловушку, что позволяет судить на глаз о приблизительной величине кровотока, склонности крови к свертыванию. Для предупреждения воздушной эмболии эти ловушки снабжают воздуховодами, с помощью которых регулируют в них уровень крови. В настоящее время во многих аппаратах на воздушные ловушки надевают ультразвуковые или фотоэлектрические детекторы, которые автоматически перекрывают венозную магистраль при падении в ловушке уровня крови ниже заданного.

Недавно ученые создали приборы, помогающие людям, потерявшим зрение – полностью или частично.

Чудо очки, например, разработаны в научно внедренческой производственной фирме «Реабилитация» на основе технологий, использовавшихся ранее лишь в военном деле. Подобно ночному прицелу, прибор действует по принципу инфракрасной локации. Черно матовые стекла очков на самом деле представляют собой пластины из оргстекла, между которыми заключено миниатюрное локационное устройство. Весь локатор вместе с очковой оправой весит порядка 50 граммов – примерно столько же, сколько и обыкновенные очки. И подбирают их, как и очки для зрячих, строго индивидуально, чтобы было и удобно, и красиво. «Линзы» не только выполняют свои прямые функции, но и прикрывают дефекты глаз. Из двух десятков вариантов каждый может выбрать для себя наиболее подходящий.

Пользоваться очками совсем не трудно: надо надеть их и включить питание. Источником энергии для них служит плоский аккумулятор размерами с сигаретную пачку. Здесь же, в блоке, помещается и генератор.

Излучаемые им сигналы, натолкнувшись на преграду, возвращаются назад и улавливаются «линзами приемниками». Принятые импульсы усиливаются, сравниваются с пороговым сигналом, и, если есть преграда, тотчас звучит зуммер – тем громче, чем ближе подошел к ней человек. Дальность действия прибора можно регулировать, используя один из двух диапазонов.

Работы по созданию электронной сетчатки успешно ведутся американскими специалистами НАСА и Главного центра при университете Джона Гопкинса.

На первых порах они постарались помочь людям, у которых еще сохранились кое какие остатки зрения. «Для них созданы телеочки, – пишут в журнале «Юный техник» С. Григорьев и Е. Рогов, – где вместо линз установлены миниатюрные телеэкраны. Столь же миниатюрные видеокамеры, расположенные на оправе, пересылают в изображение все, что попадает в поле зрения обычного человека. Однако для слабовидящего картина еще и дешифруется с помощью встроенного компьютера. Такой прибор особых чудес не создает и слепых зрячими не делает, считают специалисты, но позволит максимально использовать еще оставшиеся у человека зрительные способности, облегчит ориентацию.

Например, если у человека осталась хотя бы часть сетчатки, компьютер «расщепит» изображение таким образом, чтобы человек мог видеть окружающее хотя бы с помощью сохранившихся периферийных участков.

По оценкам разработчиков, подобные системы помогут примерно 2,5 миллионов людей, страдающих дефектами зрения. Ну а как быть с теми, у кого сетчатка практически полностью утрачена? Для них ученые глазного центра, работающего при университете Дюка (штат Северная Каролина), осваивают операции по вживлению электронной сетчатки. Под кожу имплантируются специальные электроды, которые, будучи соединены с нервами, передают изображение в мозг. Слепой видит картину, состоящую из отдельных светящихся точек, очень похожую на демонстрационное табло, что устанавливают на стадионах, вокзалах и в аэропортах. Изображение на «табло» опять таки создают миниатюрные телекамеры, укрепленные на очковой оправе».

И, наконец, последнее слово науки на сегодняшний день – попытка методами современной микротехнологии создать новые чувствительные центры на поврежденной сетчатке. Такими операциями занимаются сейчас в Северной Каролине профессор Рост Пропет и его коллеги. Совместно со специалистами НАСА они создали первые образцы субэлектронной сетчатки, которая непосредственно имплантируется в глаз.

«Наши пациенты, конечно, никогда не смогут любоваться полотнами Рембрандта, – комментирует профессор. – Однако различать, где дверь, а где окно, дорожные знаки и вывески они все таки будут…»

100 великих чудес техники

Санкт-Петербургский Государственный Политехнический Университет

КУРСОВАЯ РАБОТА

Дисциплина: Материалы медицинского применения

Тема: Искусственное легкое

Санкт-Петербург

Перечень условных обозначений, терминов и сокращений 3

1. Введение. 4

2. Анатомия дыхательной системы человека.

2.1. Воздухоносные пути. 4

2.2. Легкие. 5

2.3. Легочная вентиляция. 5

2.4. Изменения объема легких. 6

3. Искусственная вентиляция легких. 6

3.1. Основные методы искусственной вентиляции легких. 7

3.2. Показания к применению искусственной вентиляции легких. 8

3.3. Контроль адекватности искусственной вентиляции легких.

3.4. Осложнения при искусственной вентиляции легких. 9

3.5. Количественные характеристики режимов искусственной вентиляции легких. 10

4. Аппарат искусственной вентиляции легких. 10

4.1. Принцип работы аппарата искусственной вентиляции легких. 10

4.2. Медико-технические требования к аппарату ИВЛ. 11

4.3. Схемы для подачи газовой смеси пациенту.

5. Аппарат искусственного кровообращения. 13

5.1. Мембранные оксигенаторы. 14

5.2. Показания к экстракорпоральной мембранной оксигенации. 17

5.3. Каннюляция для экстракорпоральной мембранной оксигенации. 17

6. Заключение. 18

Список использованной литературы.

Перечень условных обозначений, терминов и сокращений

ИВЛ – искусственная вентиляция легких.

АД – артериальное давление.

ПДКВ — положительное давление в конце выдоха.

АИК – аппарат искусственного кровообращения.

ЭКМО — экстракорпоральная мембранная оксигенация.

ВВЭКМО — веновенозная экстракорпоральная мембранная оксигенация.

ВАЭКМО – веноартериальная экстракорпоральная мембранная оксигенация.

Гиповолемия — уменьшение объёма циркулирующей крови.

Обычно под этим более конкретно подразумевается снижение объёма плазмы крови.

Гипоксемия — понижение содержания кислорода в крови в результате нарушения кровообращения, повышенной потребности тканей в кислороде, уменьшения газообмена в лёгких при их заболеваниях, уменьшения содержания гемоглобина в крови и др.

Гиперкапния — повышенное парциальное давление (и содержание) CO2 в артериальной крови (и в организме).

Интубация — введение в гортань через рот специальной трубки с целью устранения нарушения дыхания при ожогах, некоторых травмах, тяжёлых спазмах гортани, дифтерии гортани и её острых, быстро разрешающихся отёках, например аллергических.

Трахеостома — это искусственно сформированный свищ трахеи, выведенный в наружную область шеи, для дыхания, минуя носоглотку.

В трахеостому вставляется трахеостомическая канюля.

Пневмоторакс — состояние, характеризующееся скоплением воздуха или газа в полости плевры.

1. Введение.

Дыхательная система человека обеспечивает по-сту-п-ле-ние в ор-га-низм ки-сло-ро-да и уда-ле-ние уг-ле-ки-сло-го га-за. Транс-порт га-зов и дру-гих не-об-хо-ди-мых ор-га-низ-му ве-ществ осу-ще-ст-в-ля-ет-ся с по-мо-щью кро-ве-нос-ной сис-те-мы.

Функ-ция ды-ха-тель-ной сис-те-мы сво-дит-ся лишь к то-му, что-бы снаб-жать кровь дос-та-точ-ным ко-ли-че-ст-вом ки-сло-ро-да и уда-лять из нее уг-ле-кис-лый газ. Хи-ми-че-ское вос-ста-нов-ле-ние мо-ле-ку-ляр-но-го ки-сло-ро-да с об-ра-зо-ва-ни-ем во-ды слу-жит для мле-ко-пи-таю-щих ос-нов-ным ис-точ-ни-ком энер-гии. Без нее жизнь не мо-жет про-дол-жать-ся доль-ше не-сколь-ких се-кунд.

Вос-ста-нов-ле-нию ки-сло-ро-да со-пут-ст-ву-ет об-ра-зо-ва-ние CO2 .

Ки-сло-род, входящий в CO2 , не про-ис-хо-дит не-по-сред-ст-вен-но из мо-ле-ку-ляр-но-го ки-сло-рода. Ис-поль-зо-ва-ние O2 и об-ра-зо-ва-ние CO2 свя-за-ны ме-ж-ду со-бой про-ме-жу-точ-ны-ми ме-та-бо-ли-че-ски-ми ре-ак-ция-ми; тео-ре-ти-че-ски ка-ж-дая из них длят-ся некоторое вре-мя.

Об-мен O2 и CO2 ме-ж-ду ор-га-низ-мом и сре-дой на-зы-ва-ет-ся ды-ха-ни-ем. У выс-ших жи-вот-ных про-цесс ды-ха-ния осу-ще-ст-в-ля-ет-ся бла-го-да-ря ря-ду по-сле-до-ва-тель-ных про-цес-сов.

1. Об-мен га-зов ме-ж-ду сре-дой и лег-ки-ми, что обыч-но обо-зна-ча-ют как "ле-гоч-ную вен-ти-ля-цию".

Об-мен га-зов ме-ж-ду аль-ве-о-ла-ми лег-ких и кро-вью (ле-гоч-ное ды-ха-ние).

3. Об-мен га-зов ме-ж-ду кро-вью и тка-ня-ми. Га-зы пе-ре-хо-дят внут-ри тка-ни к мес-там по-треб-ле-ния (для O2) и от мест об-ра-зо-ва-ния (для CO2) (кле-точ-ное ды-ха-ние).

Вы-па-де-ние лю-бо-го из этих про-цес-сов при-во-дит к на-ру-ше-ни-ям ды-ха-ния и соз-да-ет опас-ность для жиз-ни человека.

2.

Ана-то-мия дыхательной системы человека.

Ды-ха-тель-ная сис-те-ма че-ло-ве-ка со-сто-ит из тка-ней и ор-га-нов, обес-пе-чи-ваю-щих ле-гоч-ную вен-ти-ля-цию и ле-гоч-ное ды-ха-ние. К воз-ду-хо-нос-ным пу-тям от-но-сят-ся: нос, по-лость но-са, но-со-глот-ка, гор-тань, тра-хея, брон-хи и брон-хио-лы.

Лег-кие со-сто-ят из брон-хи-ол и аль-ве-о-ляр-ных ме-шоч-ков, а так-же из ар-те-рий, ка-пил-ля-ров и вен ле-гоч-но-го кру-га кро-во-об-ра-ще-ния. К эле-мен-там ко-ст-но-мы-шеч-ной сис-те-мы, свя-зан-ным с ды-ха-ни-ем, от-но-сят-ся реб-ра, меж-ре-бер-ные мыш-цы, диа-фраг-ма и вспо-мо-га-тель-ные ды-ха-тель-ные мыш-цы.

Воз-ду-хо-нос-ные пу-ти.

Нос и по-лость но-са слу-жат про-во-дя-щи-ми ка-на-ла-ми для воз-ду-ха, в ко-то-рых он на-гре-ва-ет-ся, ув-лаж-ня-ет-ся и фильт-ру-ет-ся. По-лость но-са вы-стла-на бо-га-то вас-ку-ля-ри-зо-ван-ной сли-зи-стой обо-лоч-кой. Мно-го-чис-лен-ные же-ст-кие во-лос-ки, а так-же снаб-жен-ные рес-нич-ка-ми эпи-те-ли-аль-ные и бо-ка-ло-вид-ные клет-ки слу-жат для очи-ст-ки вды-хае-мо-го воз-ду-ха от твер-дых час-тиц.

В верх-ней час-ти по-лос-ти ле-жат обо-ня-тель-ные клет-ки.

Гор-тань ле-жит ме-ж-ду тра-хе-ей и кор-нем язы-ка. По-лость гор-та-ни раз-де-ле-на дву-мя склад-ка-ми сли-зи-стой обо-лоч-ки, не пол-но-стью схо-дя-щи-ми-ся по сред-ней ли-нии. Про-стран-ст-во ме-ж-ду эти-ми склад-ка-ми — го-ло-со-вая щель за-щи-ще-но пла-стин-кой во-лок-ни-сто-го хря-ща — над-гор-тан-ни-ком.

Тра-хея на-чи-на-ет-ся у ниж-не-го кон-ца гор-та-ни и спус-ка-ет-ся в груд-ную по-лость, где де-лит-ся на пра-вый и ле-вый брон-хи; стен-ка ее об-ра-зо-ва-на со-еди-ни-тель-ной тка-нью и хря-щом.

Час-ти, при-мы-каю-щие к пи-ще-во-ду, за-ме-ще-ны фиб-роз-ной связ-кой. Пра-вый бронх обыч-но ко-ро-че и ши-ре ле-во-го. Вой-дя в лег-кие, глав-ные брон-хи по-сте-пен-но де-лят-ся на все бо-лее мел-кие труб-ки (брон-хио-лы), са-мые мел-кие из ко-то-рых — ко-неч-ные брон-хио-лы яв-ля-ют-ся по-след-ним эле-мен-том воз-ду-хо-нос-ных пу-тей. От гор-та-ни до ко-неч-ных брон-хи-ол труб-ки вы-стла-ны мер-ца-тель-ным эпи-те-ли-ем.

2.2.

В це-лом лег-кие име-ют вид губ-ча-тых, по-рис-тых ко-ну-со-вид-ных об-ра-зо-ва-ний, ле-жа-щих в обе-их по-ло-ви-нах груд-ной по-лос-ти. Наи-мень-ший струк-тур-ный эле-мент лег-ко-го — доль-ка со-сто-ит из ко-неч-ной брон-хио-лы, ве-ду-щей в ле-гоч-ную брон-хио-лу и аль-ве-о-ляр-ный ме-шок. Стен-ки ле-гоч-ной брон-хио-лы и аль-ве-о-ляр-но-го меш-ка об-ра-зу-ют уг-луб-ле-ния — аль-ве-о-лы. Такая структура легких увеличивает их дыхательную поверхность, которая в 50-100 раз превышает поверхность тела.

Стен-ки аль-ве-ол со-сто-ят из од-но-го слоя эпи-те-ли-аль-ных кле-ток и ок-ру-же-ны ле-гоч-ны-ми ка-пил-ля-ра-ми. Внут-рен-няя по-верх-ность аль-ве-о-лы по-кры-та по-верх-но-ст-но-ак-тив-ным ве-ще-ст-вом сур-фак-тан-том. От-дель-ная аль-ве-о-ла, тес-но со-при-ка-саю-щая-ся с со-сед-ни-ми струк-ту-ра-ми, име-ет фор-му не-пра-виль-но-го мно-го-гран-ни-ка и при-бли-зи-тель-ные раз-ме-ры до 250 мкм.

При-ня-то счи-тать, что об-щая по-верх-ность аль-ве-ол, че-рез ко-то-рую осу-ще-ст-в-ля-ет-ся га-зо-об-мен, экс-по-нен-ци-аль-но за-ви-сит от ве-са те-ла. С воз-рас-том от-ме-ча-ет-ся умень-ше-ние пло-ща-ди по-верх-но-сти аль-ве-ол.

Ка-ж-дое лег-кое ок-ру-же-но меш-ком — плев-рой. На-руж-ный (па-рие-таль-ный) лис-ток плев-ры при-мы-ка-ет к внут-рен-ней по-верх-но-сти груд-ной стен-ки и диа-фраг-ме, внут-рен-ний (вис-це-раль-ный) по-кры-ва-ет лег-кое.

Щель ме-ж-ду ли-ст-ка-ми на-зы-ва-ет-ся плев-раль-ной по-ло-стью. При дви-же-нии груд-ной клет-ки внут-рен-ний лис-ток обыч-но лег-ко сколь-зит по на-руж-но-му. Дав-ле-ние в плев-раль-ной по-лос-ти все-гда мень-ше ат-мо-сфер-но-го (от-ри-ца-тель-ное).

Искусственные органы: человек умеет все

В ус-ло-ви-ях по-коя внут-ри-плев-раль-ное дав-ле-ние у че-ло-ве-ка в сред-нем на 4,5 торр ни-же ат-мо-сфер-но-го (-4,5 торр). Меж-плев-раль-ное про-стран-ст-во ме-ж-ду лег-ки-ми на-зы-ва-ет-ся сре-до-сте-ни-ем; в нем на-хо-дят-ся тра-хея, зоб-ная же-ле-за (ти-мус) и серд-це с боль-ши-ми со-су-да-ми, лим-фа-ти-че-ские уз-лы и пи-ще-вод.

Ле-гоч-ная ар-те-рия не-сет кровь от пра-во-го же-лу-доч-ка серд-ца, она де-лит-ся на пра-вую и ле-вую вет-ви, ко-то-рые на-прав-ля-ют-ся к лег-ким.

Эти ар-те-рии вет-вят-ся, сле-дуя за брон-ха-ми, снаб-жа-ют круп-ные струк-ту-ры лег-ко-го и об-ра-зу-ют ка-пил-ля-ры, оп-ле-таю-щие стен-ки аль-ве-ол. Воз-дух в аль-ве-о-ле от-де-лен от кро-ви в ка-пил-ля-ре стен-кой аль-ве-о-лы, стен-кой ка-пил-ля-ра и в не-ко-то-рых слу-ча-ях про-ме-жу-точ-ным сло-ем ме-ж-ду ни-ми.

Из ка-пил-ля-ров кровь по-сту-па-ет в мел-кие ве-ны, ко-то-рые в кон-це кон-цов со-еди-ня-ют-ся и об-ра-зу-ют ле-гоч-ные ве-ны, дос-тав-ляю-щие кровь в ле-вое пред-сер-дие.

Брон-хи-аль-ные ар-те-рии боль-шо-го кру-га то-же при-но-сят кровь к лег-ким, а имен-но снаб-жа-ют брон-хи и брон-хио-лы, лим-фа-ти-че-ские уз-лы, стен-ки кро-ве-нос-ных со-су-дов и плев-ру.

Боль-шая часть этой кро-ви от-те-ка-ет в брон-хи-аль-ные ве-ны, а от-ту-да — в не-пар-ную (спра-ва) и в по-лу-не-пар-ную (сле-ва). Очень не-боль-шое ко-ли-че-ст-во ар-те-ри-аль-ной брон-хи-аль-ной кро-ви по-сту-па-ет в ле-гоч-ные ве-ны.

10 искусственных органов для создания настоящего человека

Оркестрио́н (нем. Orchestrion) - название ряда музыкальных инструментов, принцип действия которых подобен орга́ну и гармонике.

Первоначально оркестрионом назывался переносной орган, сконструированный по замыслу Аббата Фоглера в 1790 году. Он содержал около 900 труб, 4 мануала по 63 клавиши в каждом из них и 39 педалей. «Революционность» оркестриона Фоглера заключалась в активном использовании комбинационных тонов, что позволило существенно уменьшить размеры лабиальных органных труб.

В 1791 году такое же название было дано инструменту, который создал Томас Антон Кунц в Праге. Этот инструмент был оснащён как органными трубами, так и струнами, подобными фортепианным. Оркестрион Кунца имел 2 мануала по 65 клавиш и 25 педалей, имел 21 регистр, 230 струн и 360 труб.

В начале XIX века под названием оркестрион (также оркестри́на ) появился ряд автоматических механических инструментов, приспособленных для имитации звучания оркестра.

Инструмент имел вид шкафа, внутри которого был помещён пружинный или пневматический механизм, который при вбрасывании монеты приводился в действие. Расположение струн или труб инструмента было подобрано таким образом, чтобы при работе механизма звучали определённые музыкальные произведения. Особую популярность инструмент приобрёл в 1920-е годы в Германии.

Позднее оркестрион был вытеснен проигрывателями граммофонных пластинок.

См. также

Примечания

Литература

  • Оркестрион // Музыкальные инструменты: энциклопедия. - М.: Дека-ВС, 2008. - С. 428-429. - 786 с.
  • Оркестрион // Большая российская энциклопедия. Том 24. - М., 2014. - С. 421.
  • Мирек А.М. Оркестрион Фоглера // Справочник к схеме гармоник. - М.: Альфред Мирек, 1992. - С. 4-5. - 60 с.
  • Оркестрион // Музыкальный энциклопедический словарь. - М.: Советская энциклопедия, 1990. - С. 401. - 672 с.
  • Оркестрион // Музыкальная энциклопедия. - М.: Советская энциклопедия, 1978. - Т. 4. - С. 98-99. - 976 с.
  • Herbert Jüttemann: Orchestrien aus dem Schwarzwald : Instrumente, Firmen und Fertigungsprogramme.

    Bergkirchen: 2004. ISBN 3-932275-84-5.

CC© wikiredia.ru

Эксперимент, проведенный в Университете Гранады стал первым в ходе которого искусственная кожа была создана с дермой на основе арагозо-фибринного биоматериала. До сих пор использовались другие биоматериалы вроде коллагена, фибрина, полигликолиевой кислоты, хитозана и т.д.

Была создана более стабильная кожа с функционалом похожим на функционал обычной человеческой кожи.

Искусственный кишечник

В 2006 году английские ученые оповестили мир о создании искусственного кишечника, способного в точности воспроизвести физические и химические реакции, происходящие в процессе пищеварения.

Орган сделан из специального пластика и металла, которые не разрушаются и не подвергаются коррозии.

Тогда была впервые в истории проведена работа, которая демонстрировала, как плюрипотентные стволовые клетки человека в чашке Петри могут быть собраны в ткань организма с трехмерной архитектурой и типом связей, свойственных естественно развившейся плоти.

Искусственная кишечная ткань может стать терапевтическим средством №1 для людей, страдающих некротическим энтероколитом, воспалением кишечника и синдромом короткого кишечника.

В ходе исследований группа ученых под руководством доктора Джеймса Уэллса использовала два типа плюрипотентных клеток: эмбриональные человеческие стволовые клетки и индуцированные, полученные путем перепрограммирования клеток человеческой кожи.

Эмбриональные клетки называют плюрипотентными, потому что они способны превращаться в любой из 200 различных типов клеток человеческого организма.

Индуцированные клетки подходят для «причесывания» генотипа конкретного донора, без риска дальнейшего отторжения и связанных с этим осложнений. Это новое изобретение науки, поэтому пока неясно, обладают ли индуцированные клетки взрослого организма тем же потенциалом, что и клетки зародыша.

Искусственная ткань кишечника была «выпущена» в двух видах, собранная из двух разных типов стволовых клеток.

Чтобы превратить отдельные клетки в ткань кишечника, потребовалось много времени и сил.

Ученые собирали ткань, используя химикаты, а также белки, которые называют факторами роста. В пробирке живое вещество росло так же, как и в развивающемся эмбрионе человека.

Искусственные органы

Сначала получается так называемая эндодерма, из которой вырастают пищевод, желудок, кишки и легкие, а также поджелудочная железа и печень. Но медики дали команду эндодерме развиться только лишь в первичные клетки кишечника. На их рост до ощутимых результатов потребовалось 28 дней. Ткань созрела и обрела абсорбционную и секреторную функциональность, свойственную здоровому пищеварительному тракту человека. В ней также появились и специфические стволовые клетки, с которыми теперь работать будет значительно легче.

Искусственная кровь

Доноров крови всегда не хватает – российские клиники обеспечены препаратами крови всего на 40 % от нормы.

Для проведения одной операции на сердце с использованием системы искусственного обращения требуется кровь 10 доноров. Есть вероятность, что проблему поможет решить искусственная кровь – ее, как конструктор, уже начали собирать ученые. Созданы синтетические плазма, эритроциты и тромбоциты. Еще немного, и мы сможем стать Терминаторами!

Плазма – один из основных компонентов крови, ее жидкая часть. «Пластиковая плазма», созданная в университете Шеффилда (Великобритания), может выполнять все функции настоящей и абсолютно безопасна для организма. В ее состав входят химические вещества, способные переносить кислород и питательные вещества. На сегодняшний день искусственная плазма предназначена для спасения жизни в экстремальных ситуациях, но в ближайшем будущем ее можно будет использовать повсеместно.

Что ж, впечатляет. Хотя и немного страшновато представить, что внутри тебя течет жидкий пластик, точнее, пластиковая плазма. Ведь чтобы стать кровью, ее еще нужно наполнить эритроцитами, лейкоцитами, тромбоцитами. Помочь британским коллегам с «кровавым конструктором» решили специалисты из Калифорнийского университета (США).

Они разработали полностью синтетические эритроциты из полимеров, способные переносить кислород и питательные вещества от легких к органам и тканям и обратно, то есть выполнять основную функцию настоящих красных кровяных клеток.

Кроме того, они могут доставлять к клеткам лекарственные препараты. Ученые уверены, что в ближайшие годы завершатся все клинические испытания искусственных эритроцитов, и их можно будет применять для переливания.

Правда, предварительно разбавив их в плазме – хоть в естественной, хоть в синтетической.

Не желая отставать от калифорнийских коллег, искусственные тромбоциты разработали ученые из университета Case Western Reserve штата Огайо. Если быть точным, то это не совсем тромбоциты, а их синтетические помощники, тоже состоящие из полимерного материала. Их главная задача – создать эффективную среду для склеивания тромбоцитов, что необходимо для остановки кровотечения.

Сейчас в клиниках для этого используют тромбоцитарную массу, но ее получение – дело кропотливое и довольно долгое. Нужно найти доноров, произвести строгий отбор тромбоцитов, которые к тому же хранятся не более 5 суток и подвержены бактериальным инфекциям.

Появление искусственных тромбоцитов снимает все эти проблемы. Так что изобретение станет хорошим помощником и позволит врачам не бояться кровотечений.

    Настоящая & искусственная кровь. Что лучше?

    Термин «искусственная кровь» немного неточен. Настоящая кровь выполняет большое количество задач. Искусственная кровь пока может выполнять только некоторые из них Если будет создана полноценная искусственная кровь, способная полностью заменить настоящую, это будет настоящий прорыв в медицине.

    Искусственная кровь выполняет две основные функции:

    1) увеличивает объем кровяных телец

    2) выполняет функции обогащения кислородом.

    В то время как вещество, увеличивающее объем кровяных телец, уже давно используется в больницах, кислородная терапия пока находится в стадии разработки и клинических исследований.

      3.Предполагаемые достоинства и недостатки Искусственной крови

    Искусственные кости

    Медики из Империал колледжа в Лондоне утверждают, что им удалось псевдо-костный материал, который наиболее похож по своему составу на настоящие кости и имеет минимальные шансы на отторжение.

    Новые искусственные костные материалы фактически состоят сразу из трех химических соединений, которые симулируют работу настоящих клеток костной ткани.

    Медики и специалисты по протезированию по всему миру сейчас ведут разработки новых материалов, которые могли бы послужить полноценной заменой костной ткани в организме человека.

    Впрочем, на сегодня ученые создали лишь подобные костям материалы, пересаживать которые вместо настоящих костей, пусть и сломанных, до сих пор не доводилось.

    Основная проблема таких псевдо-костных материалов заключается в том, что организм их не распознает как «родные» костные ткани и не приживается к ним. В итоге, в организме пациента с пересаженными костями могут начаться масштабные процессы отторжения, что в худшем варианте может даже привести к масштабному сбою в иммунной системе и смерти пациента.

    Искусственное легкое

    Американские ученые из Йельского университета под руководством Лауры Никласон совершили прорыв: им удалось создать искусственное легкое и пересадить его крысам.

    Также отдельно было создано легкое, работающее автономно и имитирующее работу настоящего органа

    Надо сказать, что человеческое легкое представляет собой сложный механизм.

    Площадь поверхности одного легкого у взрослого человека составляет около 70 квадратных метров, собранных так, чтобы обеспечивать эффективный перенос кислорода и углекислого газа между кровью и воздухом. Но ткань легкого трудно восстанавливать, поэтому на данный момент единственный способ заменить поврежденные участки органа — пересадка. Данная процедура весьма рискованна в виду высокого процента отторжений.

    Согласно статистике, через десять лет после трансплантации в живых остаются лишь 10-20% пациентов.

    «Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40-50 раз в минуту. Обычный поршень для этого не подходит, в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь, и в других подобных устройствах используют мехи из гофрированного металла или пластика - сильфоны.

    Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

    Сменить руку? Не вопрос!..

    Искусственные руки

    Искусственные руки в XIX в.

    разделялись на «рабочие руки» и «руки косметические», или предметы роскоши.

    Для каменщика или чернорабочего ограничивались наложением на предплечье или плечо бандажа из кожаной гильзы с арматурой, к которой прикреплялся соответствующий профессии рабочего инструмент - клещи, кольцо, крючок и т.

    Косметические искусственные руки, смотря по занятиям, образу жизни, степени образования и другим условиям, бывали более или менее сложны.

    Искусственная рука могла иметь форму естественной, в изящной лайковой перчатке, способная производить тонкие работы; писать и даже тасовать карты (как известная рука генерала Давыдова).

    Если ампутация не достигла локтевого сустава, то при помощи искусственной руки возможно было возвратить функцию верхней конечности; но если ампутировано верхнее плечо, то работа рукой была возможна лишь через посредство объемистых, весьма сложных и требующих большого усилия аппаратов.

    Помимо последних, искусственные верхние конечности состояли из двух кожаных или металлических гильз для верхнего плеча и предплечья, которые над локтевым суставом были подвижно соединены в шарнирах посредством металлических шин. Кисть былa сделана из легкого дерева и неподвижно прикреплена к предплечью или же подвижна.

    В суставах каждого пальца находились пружины; от концов пальцев идут кишечные струны, которые соединялись позади кистевого сустава и продолжались в виде двух более крепких шнурков, причем один, пройдя по валикам через локтевой сустав, прикреплялся на верхнем плече к пружине, другой же, также двигаясь на блоке, свободно оканчивался ушком.

    При произвольном сгибании локтевого сустава пальцы смыкались в этом аппарате и совершенно закрывались, если плечо согнуто под прямым углом.

    Для заказов искусственных рук достаточно было указать меры длины и объема культи, а равно и здоровой руки, и объяснить технику цели, которым они должны служить.

    Протезы для рук должны обладать всеми нужными свойствами, к примеру, функцией закрытия и открытия кисти, удержания и выпускание из рук любой вещи, и у протеза должен быть вид, который как можно точнее копирует утраченную конечность.

    Существуют активные и пассивные протезы рук.

    Пассивные только копируют внешний вид руки, а активные, которые делятся на биоэлектрические и механические, выполняют гораздо больше функций. Механическая кисть довольно точно копирует настоящую руку, так что любой человек с ампутацией сможет расслабиться среди людей, а также сможет брать предмет и выпускать его.

    Бандаж, который крепится на плечевом поясе, приводит кисть в движение.

    Биоэлектрический протез работает благодаря электродам, считывающим ток, который вырабатывается мускулами во время сокращения, сигнал передаётся на микропроцессор и протез движется.

    Искусственные ноги

    Для человека с физическим повреждением нижних конечностей, конечно же, важны качественные протезы для ног.

    Именно от уровня ампутации конечности и будет зависеть правильный выбор протеза, который заменит и сможет даже восстановить множество функций, которые были свойственны конечности.

    Существуют протезы для людей, как молодых, так и пожилых, а также для детей, спортсменов, и тех, кто, несмотря на ампутацию, ведёт такую же активную жизнь. Протез высокого класса состоит из системы стоп, коленных шарниров, адаптеров, сделанных из материала высокого класса и повышенной прочности.

    Страницы:← предыдущая1234следующая →

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

АО «Медицинский университет Астана»

Кафедра: Медбиофизики и ОБЖ

Тема: «Искусственные органы»

Астана 2014

Идея о замене больных органов здоровыми возникла у человека еще несколько веков назад. Но несовершенные методы хирургии и анестезиологии не позволяли осуществить задуманное. В современном мире трансплантация органов заняла достойное место в лечении терминальных стадий многих заболеваний. Были спасены тысячи человеческих жизней. Но проблемы возникли с другой стороны. Катастрофический дефицит донорских органов, иммунологическая несовместимость и тысячи людей в листах ожидания того или иного органа, которые так и не дождались своей операции.

Ученые всего мира все чащи задумывались над созданием искусственных органов, которые могли бы заменить настоящие по своим функциям, и в этом направлении были достигнуты определенные успехи. Нам известны искусственные почка, легкие, сердце, кожа, кости, суставы, сетчатка, кохлеарные имплантаты.

Искусственные органы

Применение искусственных органов началось довольно давно, начиная с 1982 года, когда шестидесятиоднолетний человек по имени Барни Кларк, в прошлом дантист, первым получил искусственное сердце Jarvik-7. Аппаратура, которая поддерживала жизнь Кларка, была большой и громоздкой, но она делала свою работу, обеспечивая кровообращение в организме Кларка в течение 112 дней, пока он в конце концов не умер из-за сгустков крови и других осложнений.

Jarvik-7 до сих пор используется как временное устройство для продления жизни людей с больным сердцем до тех пор, пока им не сделают операцию по пересадке сердца. Однако очень скоро стало очевидно, что эта машина не пригодна для постоянного применения. Она слишком сложна, слишком неуправляема и слишком неэффективна для практического применения, но она действительно открыла дверь для создания целого ряда новых искусственных органов, многие из которых, несмотря на то что находятся пока в стадии разработки, дают большую надежду на продление продолжительности жизни человека.

По сравнению с другими органами, такими как печень и поджелудочная железа, сердце - это относительно простой механизм. Ему не нужно переваривать химические вещества, производить ферменты или фильтровать жидкости - оно просто должно перекачивать кровь. Учитывая ошибки, допущенные при создании первого искусственного сердца, исследователи в настоящее время работают над усовершенствованием аппаратов искусственного сердца последнего поколения для того, чтобы создать миниатюрный насос, который был бы настолько маленьким, чтобы его можно было внедрить в тело и не использовать при этом большую систему поддержки. И, кроме того, сейчас они в основном оставили идею создания целого механического сердца, сконцентрировавшись вместо этого на создании устройств, которые помогают жить пациентам с сердечной недостаточностью до тех пор, пока для больного сердца не будет найдена подходящая замена.

Самый впечатляющий пример такого вспомогательного сердечного аппарата - это устройство, поддерживающее работу левого желудочка (LVAD). Это устройство, которое использовалось в течение нескольких прошлых лет, питается от маленького аккумулятора, который носится на теле в области живота. С его помощью устройство выкачивает кровь из левого желудочка. LVAD дает дополнительное время пациентам с больным сердцем, которые ожидают операции по пересадке.

Следующим шагом, говорят ученые, явится создание искусственного сердца, которое будет полностью вживляться в тело, не требуя большого блока питания, и которое сможет работать точно так же, как настоящее сердце. Одна из главных проблем, связанных с искусственным сердцем, заключается в том, как оно перекачивает кровь. Более ранние аппараты, такие как Jarvik-7, полагались на систему диафрагмы, которая перекачивала кровь. Однако ученые говорят, что они нашли более надежный и совершенный способ - посредством крошечных двигателей, устанавливаемых внутрь устройства с помощью магнита.

Такое искусственное сердце, экспериментальный орган, получивший название Стримлайнер (Streamliner), было разработано в Центре МакГована. Это легкое устройство имплантируется в область живота и перекачивает кровь через естественное сердце и артерии при помощи пары трубок. Питание поступает от индуктивного сцепления, которое передает энергию от катушки, прикрепленной к маленькой батарее, которая носится на поясе, ко второй катушке и батарее, имплантированной прямо под кожей. Такая система обеспечила бы пользователю почти полную свободу - то, чего никогда не было у Барни Кларка. Однако Стримлайнер станет доступным еще не скоро; для его разработки потребуется еще много месяцев, и только после этого начнутся испытания, - говорят его создатели.

Создание искусственного сердца - это детская игрушка по сравнению с созданием более сложных органов, таких как печень, почки или поджелудочная железа. Эти органы часто называют «умными органами» из-за того, что они выполняют сложные функции, и их механические заменители почти наверняка должны будут содержать органические ткани для того, чтобы они могли работать должным образом. Почему? Науке предстоит пройти еще очень длинный путь, прежде чем она сможет создать механические заменители органов, которые смогли бы работать также, как настоящие.

Большинство исследований, направленных на создание биохимических «умных» органов, включают искусственное выращивание клеток органа, взятых у человека или животного, затем эту ткань помещают в так называемый биореактор - коробка или цилиндр, в котором с помощью постоянной подачи кислорода и необходимых питательных веществ создаются условия для поддержания жизни и функционирования ткани. В большинстве случаев сейчас во время таких исследований биореактор помещается в большой механизм, который перекачивает по трубам кровь. Использование полностью вживляемых биореакторов будет возможным, по крайней мере, лет через десять, - говорят ученые-медики, хотя аппараты временного пользования, которые можно носить на теле, возможно, появятся несколько раньше.

Один из самых необходимых искусственных органов - это почка. В настоящее время десятки тысяч людей для того, чтобы выжить, должны регулярно подвергаться диализу - вредной и отнимающей много времени процедуре. А диализ - это несовершенная процедура. Здоровые почки отфильтровывают отходы мочевины из крови и снабжают организм важными питательными веществами, такими как сахара и соли, полученные из этих отфильтрованных отходов. К сожалению, механизмы, с помощью которых сегодня осуществляется диализ, просто не могут выполнять вторую задачу.

Ее решение, говорят ученые, возможно с помощью искусственной биологической почки, которая представляла бы собой специально выращенную ткань, помещенную в механическое устройство. Искусственный орган такого типа мог бы справиться со всеми функциями настоящей почки, и таким образом отпала бы необходимость в традиционном диализе для большинства людей.

Такой орган в настоящее время пытаются разработать исследователи Мичиганского университета. Они культивировали проксимальные клетки канальцев, взятые из почек свиньи, и переплели их с чрезвычайно тонкими волокнами, помещенными внутрь фильтрационного патрона. Этот патрон содержится в механизме, который фильтрует кровь пациента и возвращает ей необходимые питательные вещества, которые в противном случае были бы потеряны. Эта система успешно испытана на собаках, и в тот момент, когда эта книга готовилась к изданию, исследователи ждали разрешения на проведение испытаний на людях.

искусственный орган имплантация

Скорее всего, биопочка, разработанная в Университете Мичигана, будет использоваться как временная мера, устройство, которое позволит людям с острой почечной недостаточностью жить до тех пор, пока не будет найден настоящий орган для трансплантации. Однако его создатели говорят, что появление более маленького и более совершенного аппарата - это лишь вопрос времени. Такое устройство, даже и не столь совершенное, как настоящая почка, могло бы сократить время процедуры диализа на целых 50 процентов, и, возможно, даже позволить обходиться без нее совсем.

Поджелудочная железа

Искусственная поджелудочная железа - это еще более сложное устройство, чем искусственная почка. Однако усилия, направленные на ее создание, того стоят, - говорят сторонники этой инициативы, поскольку такое устройство могло бы значительно улучшить здоровье и качество жизни миллионов людей, страдающих инсулинозависимой формой диабета.

Люди с инсулинозависимым диабетом должны регулярно проверять кровь на содержание сахара и вводить себе инсулин для того, чтобы держать болезнь под контролем. Один из самых больших недостатков такого лечения состоит в том, что невозможно узнать точно, сколько инсулина необходимо ввести больному. В большинстве случаев пациентам приходится исходить из собственного предположения. Это приводит к постоянным колебаниям уровня глюкозы, а это, как полагают, является причиной многих обычных осложнений, связанных с диабетом, включая болезнь сердца и проблемы со зрением.

Идеальная искусственная поджелудочная железа могла бы «догадываться» об уровне глюкозы по реакции организма для того, чтобы определить точно, когда и сколько инсулина ему требуется. В настоящее время на стадии разработки находится устройство под названием PancreAssist, над которым работают биомедики из Лексингтона, штат Массачусетс. Эта система контролирует химические процессы в организме и определяет, сколько инсулина ему требуется, и затем вводит его именно в то время, когда это необходимо.

PancreAssist - это устройство, состоящее из пластикового корпуса, вживляемой трубчатой мембраны, окруженной производящими инсулин «островками» из клеток, взятых у свиньи. Когда поток крови пользователя проходит по трубе, эти островки определяют уровень содержания в крови глюкозы и начинают вырабатывать инсулин, который в нужный момент поступает в кровоток, проходя через мембрану.

Мембрана также играет важную роль в защите этих островков от естественных систем защиты организма, которые сразу же начинали бы действовать, если бы была такая возможность. Если все будет идти хорошо, то клинические испытания этого устройства на людях могут начаться в течение нескольких ближайших лет, - говорят ученые.

Столь же важный, но еще более сложный орган - это печень. Расположенный в верхней правой области живота, он играет важную роль в усвоении организмом питательных веществ. Печень преобразовывает излишнюю глюкозу в гликоген, который она хранит и затем повторно преобразовывает в глюкозу, когда это необходимо. Печень также расщепляет излишние аминокислоты, превращая их в мочевину, помогает организму усваивать жир и выполняет ряд других функций. Когда печень повреждена болезнью (гепатит С) или в результате злоупотребления алкоголем, она не может функционировать должным образом. Печеночная недостаточность, как правило, означает смерть.

Печень - это трансплантабельный орган, но количество людей, нуждающихся в пересадке донорского органа, значительно превышает количество донорских органов, поэтому существует острая потребность в таком искусственном органе. Создание искусственной печени, которая могла бы функционировать на протяжении всей жизнь, могло бы помочь бесчисленному количеству пациентов, страдающих острой печеночной недостаточностью и находящихся в беспомощном положении. Однако такой орган появится еще очень нескоро. Лучшим и более надежным выходом из этого положения может стать биологическая искусственная система, которая могла бы выполнять большинство функций печени в течение короткого периода времени, достаточного для того, чтобы больной орган смог самостоятельно восстановиться.

Некоторые специалисты считают, что в большинстве случаев одной недели было бы достаточно для восстановления поврежденной печени настолько, чтобы она могла почти нормально функционировать.

Неудивительно, что несколько компаний упорно работают над созданием таких систем. К ним относится и компания Сере Биомедикал, которая в сотрудничестве со специалистами Седар-Синайского Медицинского центра в Лос-Анджелесе разработала экспериментальную систему под названием «Hepat Assist». Эта система, для создания которой использовались клетки, взятые из печени свиньи, выводит токсины из крови почти так же, как прототип биологической искусственной почки, - говорят исследователи. Пластмассовый патрон, изнутри покрытый искусственно выращенными клетками, вставляется в большой механизм, который очищает проходящую через него кровь. В лучшем случае пациенты будут использовать этот аппарат приблизительно шесть часов ежедневно в течение одной недели - времени, которого достаточно для того, чтобы печень могла себя восстановить.

Биологические искусственные органы - это лишь один подход, который ученые пытаются использовать в своем поиске способов продления жизни людей, организм которых по каким-либо причинам отказывается работать. Другой подход, который больше относится к научной фантастике, чем к реальности в этом отношении, но все-таки заслуживает обсуждения, - это концепция, связанная с понятием «ксенотрансплантация», которая основана на идее пересадки больным людям органов, полученных от других видов.

Проблему отторжения организмом получателя нового, чужеродного органа можно было бы предотвратить с помощью введения в эти органы человеческих генов, которые после этого не могли бы вызывать естественную иммунную реакцию организма, - говорят ученые.

Заключение

Искусственные органы - это устройства, предназначенные для временной или постоянной активной замены утраченной функции природного прототипа (правда, эта функция еще не может быть замещена полностью, особенно если конкретный прототип, например легкое, печень, почка или поджелудочная железа, обладает комплексом сложных функций). С искусственным органом не следует отождествлять функциональный протез - устройство, пассивно воспроизводящее основную утраченную функцию природного прототипа за счет своей формы или конструктивной особенности.

Идеальный искусственный орган должен соответствовать следующим параметрам:

Его можно имплантировать в организм человека;

Он не имеет сообщения с окружающей средой;

Изготовлен из легкого, прочного, обладающего высокой биологической совместимостью материала;

Долговечный, выдерживающий большие нагрузки;

Полностью моделирует функции естественного аналога

Список использованной литературы

1. http://meduniver.com/Medical/Xirurgia/815.html\

2. http://transplantation.eurodoctor.ru/artificialorgan/

3. http://help-help.ru/old/239/

Размещено на Allbest.ru

...

Подобные документы

    Значение искусственных органов в современной медицине. Активные и пассивные протезы рук. Правильный выбор протеза для человека с физическим повреждением нижних конечностей. Прототипы эффективных имплантируемых искусственно человеку протезов всего сердца.

    реферат , добавлен 09.04.2016

    Изучение источников и особенностей применения стволовых клеток. Исследование технологии выращивания искусственных органов на основе стволовых клеток. Преимущества биологического принтера. Характеристика механических и электрических искусственных органов.

    презентация , добавлен 20.04.2016

    Понятие искусственного сердца, его назначение и показания к применению. Поиск искусственного сердца с наиболее продвинутыми технологиями. Особенности аналогов этого аппарата, их оценка. Моделирование прототипа и гипотезы по преодолению его недостатков.

    реферат , добавлен 12.07.2012

    Имплантация искусственного хрусталика (интраокулярной линзы) в глаз. Виды искусственных хрусталиков. Особенности проведения операции по имплантации искусственного хрусталика при его помутнении (катаракте), при выраженных нарушениях остроты зрения.

    презентация , добавлен 13.01.2014

    Патогенез поражения нервной системы при соматических заболеваниях. Заболевания сердца и магистральных сосудов. Неврологические нарушения при острых и хронических заболеваний легких, печени, поджелудочной железы, почек. Поражения соединительной ткани.

    лекция , добавлен 30.07.2013

    Обзор и сравнительная характеристика искусственных клапанов. Механические искусственные клапаны. Дисковые и двухстворчатые механические искусственные клапаны сердца. Искусственное сердце и желудочки, их характеристика, принцип работы и особенности.

    реферат , добавлен 16.01.2009

    Создание искусственных органов как одно из важных направлений современной медицины. Значение выбора материалов, адекватного поставленной цели инженерного решения. Искусственные кровь, кровеносные сосуды, кишечник, сердце, кости, матка, кожа, конечности.

    презентация , добавлен 14.03.2013

    Приобретенные пороки сердца (клапанные пороки). Недостаточность и стеноз митрального, аортального и трехстворчатого клапанов. Лечение врожденных и приобретенных пороков сердца. Радикальная пластика или имплантация искусственных клапанов, коарктация аорты.

    презентация , добавлен 05.02.2015

    Особенности изучения внешней и внутренней секреции поджелудочной железы. Белки, минеральный состав поджелудочной железы, нуклеиновые кислоты. Влияние различных факторов на содержание инсулина в поджелудочной железе. Описание аномалий поджелудочной железы.

    реферат , добавлен 28.04.2010

    Особенности расположения и функции поджелудочной железы. Специфика формирования и развития этого органа. Сравнительно-анатомические данные строения поджелудочной железы у разных видов животных. Значение поджелудочной железы в регуляции углеводного обмена.

Loading...Loading...