Изобрели электронный микроскоп. Виды микроскопов: описание, основные характеристики, назначение. Чем электронный микроскоп отличается от светового

Технологическая археология)
Одни электронные микроскопы восстанавливают, другие прошивки космических аппаратов, третьи - занимаются реверс-инжинирингом схемотехники микросхем под микроскопом. Подозреваю, что занятие жутко увлекательное.
А, к слову, вспомнил о чудесном посте об индустриальной археологии .

Спойлер

Корпоративная память бывает двух видов: люди и документация. Люди помнят, как вещи работают, и знают, почему. Иногда они записывают эту информацию куда-нибудь и хранят свои записи где-нибудь. Это называется «документация». Корпоративная амнезия действует точно так же: люди уходят, и документация исчезает, гниёт или просто забывается.

Я провёл несколько десятилетий, работая в большой нефтехимической компании. В начале 1980-х мы спроектировали и построили завод, который переделывает одни углеводороды в другие углеводороды. За следующие 30 лет корпоративная память об этом заводе ослабла. Да, завод всё ещё работает и приносит фирме деньги; техобслуживание производится, и высокомудрые специалисты знают, что им надо подёргать и куда пнуть, чтобы завод продолжил работать.

Но компания абсолютно забыла, как этот завод работает.

Это произошло по вине нескольких факторов:

Спад в нефтехимической промышленности в 1980-х и 1990-х заставил нас прекратить принимать на работу новых людей. В конце 1990-х, в нашей группе работали ребята в возрасте младше 35 или старше 55 - с очень редкими исключениями.
Мы потихоньку перешли на проектирование с помощью компьютерных систем.
Из-за корпоративных реорганизаций нам пришлось физически переезжать всем офисом с места на место.
Корпоративное слияние несколькими годами позже полностью растворило нашу фирму в более крупной, вызвав глобальную перестройку отделов и перетасовку кадров.
Индустриальная археология

В начале 2000-х я и несколько моих коллег вышли на пенсию.

В конце 2000-х компания вспомнила о заводе и подумала, что было бы неплохо сделать с ним что-нибудь. Скажем, увеличить производство. К примеру, можно найти узкое место в производственном процессе и улучшить его, - технология-то эти 30 лет не стояла на месте, - и, может быть, пристроить ещё один цех.

И тут компания со всего маху впечатывается в кирпичную стену. Как этот завод был построен? Почему он был построен именно так, а не иначе? Как именно он работает? Для чего нужен чан А, зачем цеха Б и В соединены трубопроводом, почему трубопровод имеет диаметр именно Г, а не Д?

Корпоративная амнезия в действии. Гигантские машины, построенные инопланетянами с помощью их инопланетной технологии, чавкают, как заведённые, выдавая на-гора груды полимеров. Компания примерно представляет себе, как обслуживать эти машины, но понятия не имеет, что за удивительное волшебство творится внутри, и ни у кого нет ни малейшего представления о том, как они создавались. В общем, народ даже не уверен, что именно надо искать, и не знает, с какой стороны следует распутывать этот клубок.

Отыскиваются ребята, которые во время строительства этого завода уже работали в фирме. Теперь они занимают высокие должности и сидят в отдельных, кондиционированных кабинетах. Им дают задание найти документацию по означенному заводу. Это уже не корпоративная память, это больше похоже на индустриальную археологию. Никто не знает, какая документация по этому заводу существует, существует ли она вообще, и если да, то в каком виде она хранится, в каких форматах, что она в себя включает и где она лежит физически. Завод проектировался проектной группой, которой больше нет, в компании, которая с тех пор была поглощена, в офисе, который был закрыт, используя методы до-компьютерной эпохи, которые больше не применяются.

Ребята вспоминают детство с обязательным копошением в грязи, закатывают рукава дорогих пиджаков и принимаются за работу.

В современном мире микроскоп считается незаменимым оптическим устройством. Без него сложно представить такие сферы человеческой деятельности как биология, медицина, химия, космические исследования, генная инженерия.


Микроскопы используются для изучения самых разных объектов и позволяют в мельчайших деталях рассмотреть структуры, которые невидимы невооруженным глазом. Кому же человечество обязано появлением этого полезного прибора? Кто изобрел микроскоп и когда?

Когда появился первый микроскоп?

История возникновения устройства уходит корнями в далекую старину. Способность изогнутых поверхностей отражать и преломлять солнечный свет была замечена еще в III столетии до нашей эры исследователем Евклидом. В своих работах ученый нашел объяснение зрительного увеличения предметов, но тогда его открытие не нашло практического применения.

Самая ранняя информация о микроскопах восходит к XVIII веку. В 1590 году нидерландский мастер Захарий Янсен поместил в одну трубку две линзы от очков и смог увидеть предметы, увеличенные от 5 до 10 раз.


Позже известный исследователь Галилео Галилей изобрел подзорную трубу и обратил внимание на интересную особенность: если ее сильно раздвинуть, то можно существенно увеличить небольшие объекты.

Кто соорудил первую модель оптического устройства?

Настоящий научно-технический прорыв в развитии микроскопа произошел в XVII веке. В 1619 году голландский изобретатель Корнелиус Дреббель придумал микроскоп с выпуклыми линзами, а в конце столетия другой нидерландец – Христиан Гюйгенс – презентовал свою модель, в которой можно было регулировать окуляры.

Более совершенное устройство было придумано изобретателем Антони Ван Левенгуком, который создал прибор с одной большой линзой. На протяжении последующих полутора столетий это изделие давало наивысшее качество изображения, поэтому Левенгука нередко называют изобретателем микроскопа.

Кто придумал первый сложный микроскоп?

Существует мнение, что оптическое устройство изобрел не Левенгук, а Роберт Гук, который в 1661 году усовершенствовал модель Гюйгенса, добавив к ней дополнительную линзу. Полученный тип прибора стал одним из наиболее популярных в научной среде и широко использовался до середины XVIII столетия.


В дальнейшем свою руку к развитию микроскопа прикладывали многие изобретатели. В 1863 году Генри Сорби придумал поляризационное устройство, позволявшее исследовать , а в 1870-х годах Эрнст Аббе разработал теорию микроскопов и открыл безразмерную величину «число Аббе», что способствовало изготовлению более совершенного оптического оборудования.

Кто является изобретателем электронного микроскопа?

В 1931 году ученый Роберт Руденберг запатентовал новый прибор, который мог увеличивать предметы с помощью пучков электронов. Устройство получило название электронный микроскоп и нашло широкое применение во многих науках благодаря высокой разрешающей способности, в тысячи раз превосходящей обычную оптику.

Спустя год Эрнст Руска создал прототип современного электронного прибора, за что был удостоен Нобелевской премии. Уже в конце 1930-х годов его изобретение стало массово применяться в научных исследованиях. Тогда же фирма Siemens приступила к выпуску электронных микроскопов, предназначенных для коммерческого использования.

Кто автор наноскопа?

Самой инновационной разновидностью оптического микроскопа на сегодняшний день является наноскоп, разработанный в 2006 году группой ученых под руководством немецкого изобретателя Штефана Хелля.


Новое устройство позволяет не только преодолевать барьер числа Аббе, но и предоставляет возможность наблюдать за объектами, имеющими размеры 10 нанометров и меньше. Кроме того, устройство дает высококачественные трехмерные изображения объектов, что ранее было недоступно обычным микроскопам.

Оглавление темы "Электронная микроскопия. Мембрана.":









Электронные микроскопы появились в 1930-х годах и вошли в повсеместное употребление в 1950-х.

На рисунке изображен современный трансмиссионный (просвечивающий) электронный микроскоп , а на рисунке показан путь электронного пучка в этом микроскопе. В трансмиссионном электронном микроскопе электроны, прежде чем сформируется изображение, проходят сквозь образец. Такой электронный микроскоп был сконструирован первым.

Электронный микроскоп перевернут «вверх дном» по сравнению со световым микроскопом. Излучение подается на образец сверху, а изображение формируется внизу. Принцип действия электронного микроскопа в сущности тот же, что и светового микроскопа. Электронный пучок направляется конденсорными линзами на образец, а полученное изображение затем увеличивается с помощью других линз.

В таблице суммированы некоторые сходства и различия между световым и электронным микроскопами . В верхней части колонны электронного микроскопа находится источник электронов - вольфрамовая нить накала, сходная с той, какая имеется в обычной электрической лампочке. На нее подается высокое напряжение (например, 50 000 В), и нить накала излучает поток электронов. Электромагниты фокусируют электронный пучок.

Внутри колонны создается глубокий вакуум. Это необходимо для того, чтобы сократить до минимума рассеивание электронов из-за столкновения их с частицами воздуха. Для изучения в электронном микроскопе можно использовать только очень тонкие срезы или частицы, так как более крупными объектами электронный пучок почти полностью поглощается. Части объекта, отличающиеся относительно более высокой плотностью, поглощают электроны и потому на сформировавшемся изображении кажутся более темными. Для окрашивания образца с целью увеличения контраста используют тяжелые металлы, такие как свинец и уран.

Электроны невидимы для человеческого глаза, поэтому они направляются на флуоресцирующий , который воспроизводит видимое (черно-белое) изображение. Чтобы получить фотоснимок, экран убирают и направляют электроны непосредственно на фотопленку. Полученный в электронном микроскопе фотоснимок называется электронной микрофотографией.

Преимущество электронного микроскопа :
1) высокое разрешение (0,5 нм на практике)


Недостатки электронного микроскопа :
1) подготовленный к исследованию материал должен быть мертвым, так как в процессе наблюдения он находится в вакууме;
2) трудно быть уверенным, что объект воспроизводит живую клетку во всех ее деталях, поскольку фиксация и окрашивание исследуемого материала могут изменить или повредить ее структуру;
3) дорого стоит и сам электронный микроскоп и его обслуживание;
4) подготовка материала для работы с микроскопом отнимает много времени и требует высокой квалификации персонала;
5) исследуемые образцы под действием пучка электронов постепенно разрушаются. Поэтому, если требуется детальное изучение образца, необходимо его фотографировать.

История создания электронного микроскопа

В 1931 году Р. Руденберг получил патент на просвечивающий электронный микроскоп , а в 1932 году М. Кнолль и Э. Руска построили первый прототип современного прибора. Эта работа Э. Руски в 1986 году была отмечена Нобелевской премией по физике, которую присудили ему и изобретателям сканирующего зондового микроскопа Герду Карлу Биннигу и Генриху Рореру . Использование просвечивающего электронного микроскопа для научных исследований было начато в конце 1930-х годов и тогда же появился первый коммерческий прибор, построенный фирмой Siemens .

В конце 1930-х - начале 1940-х годов появились первые растровые электронные микроскопы, формирующие изображение объекта при последовательном перемещении электронного зонда малого сечения по объекту. Массовое применение этих приборов в научных исследованиях началось в 1960-х годах, когда они достигли значительного технического совершенства.

Значительным скачком (в 70-х гг) в развитии было использование вместо термоэмиссионных катодов - катодов Шоттки и катодов с холодной автоэмиссией, однако их применение требует значительно большего вакуума.

В конце 90х - начале 2000х компьютеризация и использование CCD-детекторов значительным образом увеличили стабильность и (относительно) простоту использования.

В последнее десятилетие в современных передовых просвечивающих электронных микроскопах используются корректоры сферических и хроматических аберраций (что вносят основное искажение в получаемое изображение), однако их применение порой значительно усложняет использование прибора.

Виды электронных микроскопов

Просвечивающая электронная микроскопия

Шаблон:Заготовка роздела

Первоначальная вид электронного микроскопа. В просвечивающем электронном микроскопе используется высокоэнергетический электронный пучок для формирования изображения. Электронный пучок создается посредством катода (вольфрамового, LaB 6 , Шоттки или холодной полевой эмиссии). Полученный электронный пучок ускоряется обычно до +200 кэВ (используются различные напряжения от 20кэВ до 1мэВ), фокусируется системой электростатических линз, проходит через образец так, что часть его проходит рассеиваясь на образце, а часть - нет. Таким образом, прошедший через образец электронный пучок несет информацию о структуре образца. Далее пучок проходит через систему увеличивающих линз и формирует изображение на люминесцентном экране (как правило, из сульфида цинка), фото-пластинке или CCD-камере.

Разрешение ПЭМ лимитируется в основном сферической аберрацией . Некоторые современные ПЭМ имеют корректоры сферической аберрации.

Основными недостатками ПЭМ являются необходимость в очень тонком образце (порядка 100нм) и неустойчивость(разложение) образцов под пучком.ааааа

Просвечивающая растровая(сканирующая) электронная микроскопия (ПРЭМ)

Основная статья: Просвечивающий растровый электронный микроскоп

Один из типов просвечивающей электронной микроскопии (ПЭМ), однако есть приборы работающие исключительно в режиме ПРЭМ. Пучок электронов пропускается через относительно тонкий образец, но, в отличие от обычной просвечивающей электронной микроскопии, электронный пучок фокусируется в точку, которая перемещается по образцу по растру.

Растровая (сканирующая) электронная микроскопия

В основе лежит телевизионный принцип развертки тонкого пучка электронов по поверхности образца.

Низковольтная электронная микроскопия

Сферы применения электронных микроскопов

Полупроводники и хранение данных

  • Редактирование схем
  • Метрология 3D
  • Анализ дефектов
  • Анализ неисправностей

Биология и биологические науки

  • Криобиология
  • Локализация белков
  • Электронная томография
  • Клеточная томография
  • Крио-электронная микроскопия
  • Токсикология
  • Биологическое производство и мониторинг загрузки вирусов
  • Анализ частиц
  • Фармацевтический контроль качества
  • 3D изображения тканей
  • Вирусология
  • Стеклование

Научные исследования

  • Квалификация материалов
  • Подготовка материалов и образцов
  • Создание нанопрототипов
  • Нанометрология
  • Тестирование и снятие характеристик устройств
  • Исследования микроструктуры металлов

Промышленность

  • Создание изображений высокого разрешения
  • Снятие микрохарактеристик 2D и 3D
  • Макрообразцы для нанометрической метрологии
  • Обнаружение и снятие параметров частиц
  • Конструирование прямого пучка
  • Эксперименты с динамическими материалами
  • Подготовка образцов
  • Судебная экспертиза
  • Добыча и анализ полезных ископаемых
  • Химия/Нефтехимия

Основные мировые производители электронных микроскопов

См. также

Примечания

Ссылки

  • 15 лучших изображений 2011 года, сделанных электронными микроскопами Изображения на рекомендованном сайте являются произвольно раскрашенными, и имеют скорее художественную, чем научную ценность (электронные микроскопы выдают черно-белые а не цветные изображения).

Wikimedia Foundation . 2010 .

Московский институт электронной техники

Лаборатория электронной микроскопии С.В. Седов

[email protected]

Принцип работы современного растрового электронного микроскопа и его использование для исследования объектов микроэлектроники

Цель работы: знакомство с методиками исследования материалов и микроэлектронных структур при помощи растрового электронного микроскопа.

Продолжительность работы: 4 ч.

Приборы и принадлежности: растровый электронный микроскоп Philips-

SEM-515, образцы микроэлектронных структур.

Устройство и принцип работы растрового электронного микроскопа

1. Введение

Растровая электронная микроскопия - это исследование объекта путем облучения тонко сфокусированным электронным пучком, который развертывается в растр по поверхности образца. В результате взаимодействия сфокусированного электронного пучка с поверхностью образца возникают вторичные электроны, отраженные электроны, характеристическое рентгеновское излучение, ожэ-электроны и фотоны различных энергий. Они рождаются в определенных объемах - областях генерации внутри образца и могут быть использованы для измерения многих его характеристик, таких как топография поверхности, химический состав, электрофизические свойства и т д.

Основной причиной широкого использования растровых электронных микроскоов является высокое разрешение при исследовании массивных объектов, достигающее 1,0 нм (10 Å). Другой важной чертой изображений, получаемых в растровом электронном микроскопе является их объемность, обусловленная большой глубиной резкости прибора. Удобство применения растрового микроскопа в микро-и нанотехнологии объясняется относительной простотой подготовки образца и оперативностью исследования, что позволяет использовать его для межоперационного контроля технологических параметров без значительных потерь времени. Изображение в растровом микроскопе формируется в виде телевизионного сигнала, что существенно упрощает его ввод в компьютер и дальнейшую программную обработку результатов исследований.

Развитие микротехнологий и появление нанотехнологий, где размеры элементов существенно меньше длины волны видимого света, делает растровую электронную микроскопию практически единственной неразрушающей методикой визуального контроля при производстве изделий твердотельной электроники и микромеханики.

2. Взаимодействие электронного луча с образцом

При взаимодействии пучка электронов с твердой мишенью возникает большое число различного рода сигналов. Источником этих сигналов являются области излучения, размеры которых зависят от энергии пучка и атомного номера бомбардируемой мишени. Размерами этой области, при использовании определенного сорта сигнала, определяется разрешение микроскопа. На рис. 1 показаны области возбуждения в образце для разных сигналов.

Полное распределение по энергии электронов, излучаемых образцом

приведено на рис.2. Оно получено при энергии падающего пучка Е 0= 180эВ, по оси ординат отложено число эмиттированых мишенью электронов J s (E), а по оси абсцисс - энергия Е этих электронов. Заметим, что вид зависимости,

приведенной на рис.2, сохраняется и для пучков с энергией 5 – 50 кэВ, используемых в растровых электронных микроскопах.

Г
руппуI составляют упруго отраженные электроны с энергией, близкой к энергии первичного пучка. Они возникают при упругом рассеянии под большими углами. С увеличением атомного номера Z растет упругое рассеяние и увеличивается доля отраженных электронов . Распределение отраженных электронов по энергиям для некоторых элементов приведено на рис.3.

Угол рассеяния 135 0
, W=E/E 0 - нормированная энергия, d/dW - число отраженных электронов на падающий электрон и на единицу энергетического интервала. Из рисунка видно, что при увеличении атомного номера не только растет число отраженных электронов, но и их энергия становится ближе к энергии первичного пучка. Это приводит к возникновению контраста по атомному номеру и позволяет исследовать фазовый состав объекта.

Группа II включает в себя электроны, подвергшиеся многократному неупругому рассеянию и излученные к поверхности после прохождения более или менее толстого слоя материала мишени, потеряв при этом определенную часть своей первоначальной энергии.

Э
лектроны группыIII являются вторичными электронами с малой энергией (менее 50 эВ), которые образуются при возбуждении первичным пучком слабосвязаных электронов внешних оболочек атомов мишени. Основное влияние на количество вторичных электронов оказывает топография поверхности образца и локальные электрические и магнитные поля. Количество выходящих вторичных электронов зависит от угла падения первичного пучка (рис.4). Пусть R 0 – максимальная глубина выхода вторичных электронов. Если образец наклонен, то длина пути в пределах расстояния R 0 от поверхности возрастает: R = R 0 sec 

Следовательно возрастает и количество соударений, при которых рождаются вторичные электроны. Поэтому незначительное изменение угла падения приводит к заметному изменению яркости выходного сигнала. Благодаря тому, что генерация вторичных электронов происходит в основном в приповерхностной области образца (рис.1), разрешение изображения во вторичных электронах близко к размерам первичного электронного пучка.

Характеристическое рентгеновское излучение возникает в результате взаимодействия падающих электронов с электронами внутренних K, L, или М оболочек атомов образца. Спектр характеристического излучения несет информацию о химическом составе объекта. На этом основаны многочисленные методы микроанализа состава. Большинство современных растровых электронных микроскопов оснащено энергодисперсионными спектрометрами для качественного и количественного микроанализа, а так же для создания карт поверхности образца в характеристическом рентгеновском излучении определенных элементов.

3 Устройство растрового электронного микроскопа .

Loading...Loading...