Искусственные женские органы. Скамейка запасных: какие искусственные органы уже нашли свое место в теле человека. Мечты и разочарования

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы – вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

«Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40‑50 раз в минуту. Обычный поршень для этого не подходит: в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь и в других подобных устройствах используют мехи из гофрированного металла или пластика – сильфоны. Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

«Аппарат искусственного кровообращения» устроен аналогично. Его шланги подключаются к кровеносным сосудам хирургическим путем.

Первая попытка замещения функции сердца механическим аналогом была сделана еще в 1812 году. Однако до сих пор среди множества изготовленных аппаратов нет полностью удовлетворяющего врачей.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия.

Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается – и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца.

Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Российский конструктор Александр Дробышев, несмотря на все трудности, продолжает создавать новые современные конструкции «Поиска», которые будут значительно дешевле зарубежных образцов.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» «Новакор» стоит 400 тысяч долларов. С ней можно целый год дома ждать операции.

В кейсе‑чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке – наружный сервис: компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома с больным – блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного – следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Аппараты «Искусственная почка» работают уже довольно давно и успешно применяются медиками.

Еще в 1837 году, изучая процессы движения растворов через полупроницаемые мембраны, Т. Грехен впервые применил и ввел в употребление термин «диализ» (от греческого dialisis – отделение). Но лишь в 1912 году на основе этого метода в США был сконструирован аппарат, с помощью которого его авторы проводили в эксперименте удаление салицилатов из крови животных. В аппарате, названном ими «искусственная почка», в качестве полупроницаемой мембраны были использованы трубочки из коллодия, по которым текла кровь животного, а снаружи они омывались изотоническим раствором хлорида натрия. Впрочем, коллодий, примененный Дж. Абелем, оказался довольно хрупким материалом и в дальнейшем другие авторы для диализа пробовали иные материалы, такие как кишечник птиц, плавательный пузырь рыб, брюшину телят, тростник, бумагу.

Для предотвращения свертывания крови использовали гирудин – полипептид, содержащийся в секрете слюнных желез медицинской пиявки. Эти два открытия и явились прототипом всех последующих разработок в области внепочечного очищения.

Каковы бы ни были усовершенствования в этой области, принцип пока остается одним и тем же. В любом варианте «искусственная почка» включает в себя следующие элементы: полупроницаемая мембрана, с одной стороны которой течет кровь, а с другой стороны – солевой раствор. Для предотвращения свертывания крови используют антикоагулянты – лекарственные вещества, уменьшающие свертываемость крови. В этом случае происходит выравнивание концентраций низкомолекулярных соединений ионов, мочевины, креатинина, глюкозы, других веществ с малой молекулярной массой. При увеличении пористости мембраны возникает перемещение веществ с большей молекулярной массой. Если же к этому процессу добавить избыточное гидростатическое давление со стороны крови или отрицательное давление со стороны омывающего раствора, то процесс переноса будет сопровождаться и перемещением воды – конвекционный массообмен. Для переноса воды можно воспользоваться и осмотическим давлением, добавляя в диализат осмотически активные вещества. Чаще всего с этой целью использовали глюкозу, реже фруктозу и другие сахара и еще реже продукты иного химического происхождения. При этом, вводя глюкозу в больших количествах, можно получить действительно выраженный дегидратационный эффект, однако повышение концентрации глюкозы в диализате выше некоторых значений не рекомендуется из‑за возможности развития осложнений.

Наконец, можно вообще отказаться от омывающего мембрану раствора (диализата) и получить выход через мембрану жидкой части крови: вода и вещества с молекулярной массой широкого диапазона.

В 1925 году Дж. Хаас провел первый диализ у человека, а в 1928 году он же использовал гепарин, поскольку длительное применение гирудина было связано с токсическими эффектами, да и само его воздействие на свертывание крови было нестабильным. Впервые же гепарин был применен для диализа в 1926 году в эксперименте Х. Нехельсом и Р. Лимом.

Поскольку перечисленные выше материалы оказывались малопригодными в качестве основы для создания полупроницаемых мембран, продолжался поиск других материалов, и в 1938 году впервые для гемодиализа был применен целлофан, который в последующие годы длительное время оставался основным сырьем для производства полупроницаемых мембран.

Первый же аппарат «искусственная почка», пригодный для широкого клинического применения, был создан в 1943 году В. Колффом и Х. Берком. Затем эти аппараты усовершенствовались. При этом развитие технической мысли в этой области вначале касалось в большей степени именно модификации диализаторов и лишь в последние годы стало затрагивать в значительной мере собственно аппараты.

В результате появилось два основных типа диализатора, так называемых катушечных, где использовали трубки из целлофана, и плоскопараллельных, в которых применялись плоские мембраны.

В 1960 году Ф. Киил сконструировал весьма удачный вариант плоскопараллельного диализатора с пластинами из полипропилена, и в течение ряда лет этот тип диализатора и его модификации распространились по всему миру, заняв ведущее место среди всех других видов диализаторов.

Затем процесс создания более эффективных гемодиализаторов и упрощения техники гемодиализа развивался в двух основных направлениях: конструирование самого диализатора, причем доминирующее положение со временем заняли диализаторы однократного применения, и использование в качестве полупроницаемой мембраны новых материалов.

Диализатор – сердце «искусственной почки», и поэтому основные усилия химиков и инженеров были всегда направлены на совершенствование именно этого звена в сложной системе аппарата в целом. Однако техническая мысль не оставляла без внимания и аппарат как таковой.

В 1960‑х годах возникла идея применения так называемых центральных систем, то есть аппаратов «искусственная почка», в которых диализат готовили из концентрата – смеси солей, концентрация которых в 30‑34 раза превышала концентрацию их в крови больного.

Комбинация диализа «на слив» и техники рециркуляции была использована в ряде аппаратов «искусственная почка», например американской фирмой «Travenol». В этом случае около 8 литров диализата с большой скоростью циркулировало в отдельной емкости, в которую был помещен диализатор и в которую каждую минуту добавляли по 250 миллилитров свежего раствора и столько же выбрасывали в канализацию.

На первых порах для гемодиализа использовали простую водопроводную воду, потом из‑за ее загрязненности, в частности микроорганизмами, пробовали применять дистиллированную воду, но это оказалось очень дорогим и малопроизводительным делом. Радикально вопрос был решен после создания специальных систем по подготовке водопроводной воды, куда входят фильтры для ее очистки от механических загрязнений, железа и его окислов, кремния и других элементов, ионообменные смолы для устранения жесткости воды и установки так называемого «обратного» осмоса.

Много усилий было затрачено на совершенствование мониторных систем аппаратов «искусственная почка». Так, кроме постоянного слежения за температурой диализата, стали постоянно наблюдать с помощью специальных датчиков и за химическим составом диализата, ориентируясь на общую электропроводность диализата, которая меняется при снижении концентрации солей и повышается при увеличении таковой.

После этого в аппаратах «искусственная почка» стали применять ионо‑селективные проточные датчики, которые постоянно следили бы за ионной концентрацией. Компьютер же позволил управлять процессом, вводя из дополнительных емкостей недостающие элементы, или менять их соотношение, используя принцип обратной связи.

Величина ультрафильтрации в ходе диализа зависит не только от качества мембраны, во всех случаях решающим фактором является трансмембранное давление, поэтому в мониторах стали широко применять датчики давления: степень разрежения по диализату, величина давления на входе и выходе диализатора. Современная техника, использующая компьютеры, позволяет программировать процесс ультрафильтрации.

Выходя из диализатора, кровь попадает в вену больного через воздушную ловушку, что позволяет судить на глаз о приблизительной величине кровотока, склонности крови к свертыванию. Для предупреждения воздушной эмболии эти ловушки снабжают воздуховодами, с помощью которых регулируют в них уровень крови. В настоящее время во многих аппаратах на воздушные ловушки надевают ультразвуковые или фотоэлектрические детекторы, которые автоматически перекрывают венозную магистраль при падении в ловушке уровня крови ниже заданного.

Недавно ученые создали приборы, помогающие людям, потерявшим зрение – полностью или частично.

Чудо‑очки, например, разработаны в научно‑внедренческой производственной фирме «Реабилитация» на основе технологий, использовавшихся ранее лишь в военном деле. Подобно ночному прицелу, прибор действует по принципу инфракрасной локации. Черно‑матовые стекла очков на самом деле представляют собой пластины из оргстекла, между которыми заключено миниатюрное локационное устройство. Весь локатор вместе с очковой оправой весит порядка 50 граммов – примерно столько же, сколько и обыкновенные очки. И подбирают их, как и очки для зрячих, строго индивидуально, чтобы было и удобно, и красиво. «Линзы» не только выполняют свои прямые функции, но и прикрывают дефекты глаз. Из двух десятков вариантов каждый может выбрать для себя наиболее подходящий.

Пользоваться очками совсем не трудно: надо надеть их и включить питание. Источником энергии для них служит плоский аккумулятор размерами с сигаретную пачку. Здесь же, в блоке, помещается и генератор.

Излучаемые им сигналы, натолкнувшись на преграду, возвращаются назад и улавливаются «линзами‑приемниками». Принятые импульсы усиливаются, сравниваются с пороговым сигналом, и, если есть преграда, тотчас звучит зуммер – тем громче, чем ближе подошел к ней человек. Дальность действия прибора можно регулировать, используя один из двух диапазонов.

Работы по созданию электронной сетчатки успешно ведутся американскими специалистами НАСА и Главного центра при университете Джона Гопкинса.

На первых порах они постарались помочь людям, у которых еще сохранились кое‑какие остатки зрения. «Для них созданы телеочки, – пишут в журнале «Юный техник» С. Григорьев и Е. Рогов, – где вместо линз установлены миниатюрные телеэкраны. Столь же миниатюрные видеокамеры, расположенные на оправе, пересылают в изображение все, что попадает в поле зрения обычного человека. Однако для слабовидящего картина еще и дешифруется с помощью встроенного компьютера. Такой прибор особых чудес не создает и слепых зрячими не делает, считают специалисты, но позволит максимально использовать еще оставшиеся у человека зрительные способности, облегчит ориентацию.

Например, если у человека осталась хотя бы часть сетчатки, компьютер «расщепит» изображение таким образом, чтобы человек мог видеть окружающее хотя бы с помощью сохранившихся периферийных участков.

По оценкам разработчиков, подобные системы помогут примерно 2,5 миллионов людей, страдающих дефектами зрения. Ну а как быть с теми, у кого сетчатка практически полностью утрачена? Для них ученые глазного центра, работающего при университете Дюка (штат Северная Каролина), осваивают операции по вживлению электронной сетчатки. Под кожу имплантируются специальные электроды, которые, будучи соединены с нервами, передают изображение в мозг. Слепой видит картину, состоящую из отдельных светящихся точек, очень похожую на демонстрационное табло, что устанавливают на стадионах, вокзалах и в аэропортах. Изображение на «табло» опять‑таки создают миниатюрные телекамеры, укрепленные на очковой оправе».

И, наконец, последнее слово науки на сегодняшний день – попытка методами современной микротехнологии создать новые чувствительные центры на поврежденной сетчатке. Такими операциями занимаются сейчас в Северной Каролине профессор Рост Пропет и его коллеги. Совместно со специалистами НАСА они создали первые образцы субэлектронной сетчатки, которая непосредственно имплантируется в глаз.

«Наши пациенты, конечно, никогда не смогут любоваться полотнами Рембрандта, – комментирует профессор. – Однако различать, где дверь, а где окно, дорожные знаки и вывески они все‑таки будут…»

Искусственные органы человека

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы – вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

«Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40-50 раз в минуту. Обычный поршень для этого не подходит: в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь и в других подобных устройствах используют мехи из гофрированного металла или пластика – сильфоны. Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

«Аппарат искусственного кровообращения» устроен аналогично. Его шланги подключаются к кровеносным сосудам хирургическим путем.

Первая попытка замещения функции сердца механическим аналогом была сделана еще в 1812 году. Однако до сих пор среди множества изготовленных аппаратов нет полностью удовлетворяющего врачей.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия.

Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается – и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца.

Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Российский конструктор Александр Дробышев, несмотря на все трудности, продолжает создавать новые современные конструкции «Поиска», которые будут значительно дешевле зарубежных образцов.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» «Новакор» стоит 400 тысяч долларов. С ней можно целый год дома ждать операции.

В кейсе-чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке – наружный сервис: компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома с больным – блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного – следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Аппараты «Искусственная почка» работают уже довольно давно и успешно применяются медиками.

Еще в 1837 году, изучая процессы движения растворов через полупроницаемые мембраны, Т. Грехен впервые применил и ввел в употребление термин «диализ» (от греческого dialisis – отделение). Но лишь в 1912 году на основе этого метода в США был сконструирован аппарат, с помощью которого его авторы проводили в эксперименте удаление салицилатов из крови животных. В аппарате, названном ими «искусственная почка», в качестве полупроницаемой мембраны были использованы трубочки из коллодия, по которым текла кровь животного, а снаружи они омывались изотоническим раствором хлорида натрия. Впрочем, коллодий, примененный Дж. Абелем, оказался довольно хрупким материалом и в дальнейшем другие авторы для диализа пробовали иные материалы, такие как кишечник птиц, плавательный пузырь рыб, брюшину телят, тростник, бумагу.

Для предотвращения свертывания крови использовали гирудин – полипептид, содержащийся в секрете слюнных желез медицинской пиявки. Эти два открытия и явились прототипом всех последующих разработок в области внепочечного очищения.

Каковы бы ни были усовершенствования в этой области, принцип пока остается одним и тем же. В любом варианте «искусственная почка» включает в себя следующие элементы: полупроницаемая мембрана, с одной стороны которой течет кровь, а с другой стороны – солевой раствор. Для предотвращения свертывания крови используют антикоагулянты – лекарственные вещества, уменьшающие свертываемость крови. В этом случае происходит выравнивание концентраций низкомолекулярных соединений ионов, мочевины, креатинина, глюкозы, других веществ с малой молекулярной массой. При увеличении пористости мембраны возникает перемещение веществ с большей молекулярной массой. Если же к этому процессу добавить избыточное гидростатическое давление со стороны крови или отрицательное давление со стороны омывающего раствора, то процесс переноса будет сопровождаться и перемещением воды – конвекционный массообмен. Для переноса воды можно воспользоваться и осмотическим давлением, добавляя в диализат осмотически активные вещества. Чаще всего с этой целью использовали глюкозу, реже фруктозу и другие сахара и еще реже продукты иного химического происхождения. При этом, вводя глюкозу в больших количествах, можно получить действительно выраженный дегидратационный эффект, однако повышение концентрации глюкозы в диализате выше некоторых значений не рекомендуется из-за возможности развития осложнений.

Наконец, можно вообще отказаться от омывающего мембрану раствора (диализата) и получить выход через мембрану жидкой части крови: вода и вещества с молекулярной массой широкого диапазона.

В 1925 году Дж. Хаас провел первый диализ у человека, а в 1928 году он же использовал гепарин, поскольку длительное применение гирудина было связано с токсическими эффектами, да и само его воздействие на свертывание крови было нестабильным. Впервые же гепарин был применен для диализа в 1926 году в эксперименте Х. Нехельсом и Р. Лимом.

Поскольку перечисленные выше материалы оказывались малопригодными в качестве основы для создания полупроницаемых мембран, продолжался поиск других материалов, и в 1938 году впервые для гемодиализа был применен целлофан, который в последующие годы длительное время оставался основным сырьем для производства полупроницаемых мембран.

Первый же аппарат «искусственная почка», пригодный для широкого клинического применения, был создан в 1943 году В. Колффом и Х. Берком. Затем эти аппараты усовершенствовались. При этом развитие технической мысли в этой области вначале касалось в большей степени именно модификации диализаторов и лишь в последние годы стало затрагивать в значительной мере собственно аппараты.

В результате появилось два основных типа диализатора, так называемых катушечных, где использовали трубки из целлофана, и плоскопараллельных, в которых применялись плоские мембраны.

В 1960 году Ф. Киил сконструировал весьма удачный вариант плоскопараллельного диализатора с пластинами из полипропилена, и в течение ряда лет этот тип диализатора и его модификации распространились по всему миру, заняв ведущее место среди всех других видов диализаторов.

Затем процесс создания более эффективных гемодиализаторов и упрощения техники гемодиализа развивался в двух основных направлениях: конструирование самого диализатора, причем доминирующее положение со временем заняли диализаторы однократного применения, и использование в качестве полупроницаемой мембраны новых материалов.

Диализатор – сердце «искусственной почки», и поэтому основные усилия химиков и инженеров были всегда направлены на совершенствование именно этого звена в сложной системе аппарата в целом. Однако техническая мысль не оставляла без внимания и аппарат как таковой.

В 1960-х годах возникла идея применения так называемых центральных систем, то есть аппаратов «искусственная почка», в которых диализат готовили из концентрата – смеси солей, концентрация которых в 30-34 раза превышала концентрацию их в крови больного.

Комбинация диализа «на слив» и техники рециркуляции была использована в ряде аппаратов «искусственная почка», например американской фирмой «Travenol». В этом случае около 8 литров диализата с большой скоростью циркулировало в отдельной емкости, в которую был помещен диализатор и в которую каждую минуту добавляли по 250 миллилитров свежего раствора и столько же выбрасывали в канализацию.

На первых порах для гемодиализа использовали простую водопроводную воду, потом из-за ее загрязненности, в частности микроорганизмами, пробовали применять дистиллированную воду, но это оказалось очень дорогим и малопроизводительным делом. Радикально вопрос был решен после создания специальных систем по подготовке водопроводной воды, куда входят фильтры для ее очистки от механических загрязнений, железа и его окислов, кремния и других элементов, ионообменные смолы для устранения жесткости воды и установки так называемого «обратного» осмоса.

Много усилий было затрачено на совершенствование мониторных систем аппаратов «искусственная почка». Так, кроме постоянного слежения за температурой диализата, стали постоянно наблюдать с помощью специальных датчиков и за химическим составом диализата, ориентируясь на общую электропроводность диализата, которая меняется при снижении концентрации солей и повышается при увеличении таковой.

После этого в аппаратах «искусственная почка» стали применять ионо-селективные проточные датчики, которые постоянно следили бы за ионной концентрацией. Компьютер же позволил управлять процессом, вводя из дополнительных емкостей недостающие элементы, или менять их соотношение, используя принцип обратной связи.

Величина ультрафильтрации в ходе диализа зависит не только от качества мембраны, во всех случаях решающим фактором является трансмембранное давление, поэтому в мониторах стали широко применять датчики давления: степень разрежения по диализату, величина давления на входе и выходе диализатора. Современная техника, использующая компьютеры, позволяет программировать процесс ультрафильтрации.

Выходя из диализатора, кровь попадает в вену больного через воздушную ловушку, что позволяет судить на глаз о приблизительной величине кровотока, склонности крови к свертыванию. Для предупреждения воздушной эмболии эти ловушки снабжают воздуховодами, с помощью которых регулируют в них уровень крови. В настоящее время во многих аппаратах на воздушные ловушки надевают ультразвуковые или фотоэлектрические детекторы, которые автоматически перекрывают венозную магистраль при падении в ловушке уровня крови ниже заданного.

Недавно ученые создали приборы, помогающие людям, потерявшим зрение – полностью или частично.

Чудо-очки, например, разработаны в научно-внедренческой производственной фирме «Реабилитация» на основе технологий, использовавшихся ранее лишь в военном деле. Подобно ночному прицелу, прибор действует по принципу инфракрасной локации. Черно-матовые стекла очков на самом деле представляют собой пластины из оргстекла, между которыми заключено миниатюрное локационное устройство. Весь локатор вместе с очковой оправой весит порядка 50 граммов – примерно столько же, сколько и обыкновенные очки. И подбирают их, как и очки для зрячих, строго индивидуально, чтобы было и удобно, и красиво. «Линзы» не только выполняют свои прямые функции, но и прикрывают дефекты глаз. Из двух десятков вариантов каждый может выбрать для себя наиболее подходящий.

Пользоваться очками совсем не трудно: надо надеть их и включить питание. Источником энергии для них служит плоский аккумулятор размерами с сигаретную пачку. Здесь же, в блоке, помещается и генератор.

Излучаемые им сигналы, натолкнувшись на преграду, возвращаются назад и улавливаются «линзами-приемниками». Принятые импульсы усиливаются, сравниваются с пороговым сигналом, и, если есть преграда, тотчас звучит зуммер – тем громче, чем ближе подошел к ней человек. Дальность действия прибора можно регулировать, используя один из двух диапазонов.

Работы по созданию электронной сетчатки успешно ведутся американскими специалистами НАСА и Главного центра при университете Джона Гопкинса.

На первых порах они постарались помочь людям, у которых еще сохранились кое-какие остатки зрения. «Для них созданы телеочки, – пишут в журнале «Юный техник» С. Григорьев и Е. Рогов, – где вместо линз установлены миниатюрные телеэкраны. Столь же миниатюрные видеокамеры, расположенные на оправе, пересылают в изображение все, что попадает в поле зрения обычного человека. Однако для слабовидящего картина еще и дешифруется с помощью встроенного компьютера. Такой прибор особых чудес не создает и слепых зрячими не делает, считают специалисты, но позволит максимально использовать еще оставшиеся у человека зрительные способности, облегчит ориентацию.

Например, если у человека осталась хотя бы часть сетчатки, компьютер «расщепит» изображение таким образом, чтобы человек мог видеть окружающее хотя бы с помощью сохранившихся периферийных участков.

По оценкам разработчиков, подобные системы помогут примерно 2,5 миллионов людей, страдающих дефектами зрения. Ну а как быть с теми, у кого сетчатка практически полностью утрачена? Для них ученые глазного центра, работающего при университете Дюка (штат Северная Каролина), осваивают операции по вживлению электронной сетчатки. Под кожу имплантируются специальные электроды, которые, будучи соединены с нервами, передают изображение в мозг. Слепой видит картину, состоящую из отдельных светящихся точек, очень похожую на демонстрационное табло, что устанавливают на стадионах, вокзалах и в аэропортах. Изображение на «табло» опять-таки создают миниатюрные телекамеры, укрепленные на очковой оправе».

И, наконец, последнее слово науки на сегодняшний день – попытка методами современной микротехнологии создать новые чувствительные центры на поврежденной сетчатке. Такими операциями занимаются сейчас в Северной Каролине профессор Рост Пропет и его коллеги. Совместно со специалистами НАСА они создали первые образцы субэлектронной сетчатки, которая непосредственно имплантируется в глаз.

«Наши пациенты, конечно, никогда не смогут любоваться полотнами Рембрандта, – комментирует профессор. – Однако различать, где дверь, а где окно, дорожные знаки и вывески они все-таки будут…»

Из книги Большая Советская Энциклопедия (ВО) автора БСЭ

Из книги Большая Советская Энциклопедия (ЗУ) автора БСЭ

Из книги Большая Советская Энциклопедия (ИС) автора БСЭ

Из книги Большая Советская Энциклопедия (СП) автора БСЭ

Из книги Промальп в ответах на вопросы автора Гофштейн Александр Ильич

Из книги Тайны драгоценных камней автора Старцев Руслан Владимирович

Из книги Странности нашего тела – 2 автора Джуан Стивен

3.9. Искусственные точки закрепления веревок (искусственные точки опоры - ИТО) Если нет возможности надежно закрепить несущую и (или) страховочную веревку (точки закрепления отсутствуют вовсе или их надежность сомнительна), а использование локальных петель по каким-либо

Из книги Правоведение: Шпаргалка автора Автор неизвестен

Искусственные рубины Уже было сказано о том, что давно люди пытались получать драгоценные камни сами. Но только с получением обширных знаний по физике и химии это в конце концов оказалось возможно.Еще в 1837 году некий Марк Годен - французский химик - поставил и успешно

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Существуют ли искусственные почки? Можно сказать, что подобие искусственных почек существует с 1944 г. Функции почек выполняет аппарат для диализа, но его размещают вне тела. Диализ можно проводить, используя стационарную больничную установку (обычно два раза в неделю),

Из книги Осмысление процессов автора Тевосян Михаил

Из книги Макияж [Краткая энциклопедия] автора Колпакова Анастасия Витальевна

5.5. Анализаторы. Органы чувств, их роль в организме. Строение и функции. Высшая нервная деятельность. Сон, его значение. Сознание, память, эмоции, речь, мышление. Особенности психики человека 5.5.1 Органы чувств (анализаторы). Строение и функции органов зрения и слуха Основные

Из книги Катастрофы тела [Влияние звезд, деформация черепа, великаны, карлики, толстяки, волосатики, уродцы...] автора Кудряшов Виктор Евгеньевич

6.5. Происхождение человека. Человек как вид, его место в системе органического мира. Гипотезы происхождения человека. Движущие силы и этапы эволюции человека. Человеческие расы, их генетическое родство. Биосоциальная природа человека. Социальная и природная среда,

Из книги Универсальный энциклопедический справочник автора Исаева Е. Л.

Из книги автора

Искусственные ресницы Современные технологии позволяют сделать взгляд неотразимым. Этого можно достичь наращиванием ресниц. Искусственные ресницы стали актуальными в последнее время, несмотря на то, что процедура довольно дорогая и трудоемкая.Существует несколько

Из книги автора

Искусственные карлики Первые попытки искусственного создания карликов имели место на закате Римской Империи. Когда они оказались удачными, тут же возник целый промысел, специализирующийся на производстве и продаже искусственных карликов. Среди римского плебса агенты

Из книги автора

Внутренние органы человека Дыхательная

21/06/2017

Искусственное выращивание органов может спасти миллионы человеческих жизней. Регулярно поступающие новости из сферы регенеративной медицины звучат обнадеживающе и многообещающе. Кажется, что уже не за горами тот день, когда биоинженерные ткани и органы будут так же доступны, как запчасти к автомобилям

Успехи регенеративной медицины

Методы терапии с использованием клеточных технологий уже многие годы успешно применяют во врачебной практике. Созданы и успешно используются искусственные органы и ткани, полученные с помощью методов клеточной терапии и тканевой инженерии. К практическим достижениям в области регенеративной биомедицины относится выращивание хрящевых тканей, мочевого пузыря, уретры, сердечных клапанов, трахеи, роговицы и кожи. Удалось вырастить искусственный зуб, пока только в организме крысы, но стоматологам стоит задуматься о кардинально новых подходах. Была разработана технология восстановления гортани после операции по ее удалению и уже выполнено много таких операций. Известны случаи успешной имплантации трахеи, выращенной на донорской матрице из клеток пациента. В течение многих лет осуществляют трансплантацию искусственной роговицы.

Уже налажено серийное производство биопринтеров, которые слой за слоем печатают живые ткани и органы заданной трехмерной формы

Самыми простыми для выращивания оказались хрящевая ткань и кожа. В деле выращивания костей и хрящей на матрицах достигнут большой прогресс. Следующий уровень по сложности занимают кровеносные сосуды. На третьем уровне оказались мочевой пузырь и матка. Но эта ступень уже пройдена в 2000–2005 гг., после успешного завершения ряда операций по трансплантации искусственного мочевого пузыря и уретры. Тканевые имплантаты вагины, выращенные в лаборатории из мышечных и эпителиальных клеток пациенток, не только успешно прижились, сформировав нервы и сосуды, но и нормально функционируют уже около 10 лет.

Самыми сложными органами для биомедицины остаются сердце и почки, которые имеют сложную иннервацию и систему кровеносных сосудов. До выращивания целой искусственной печени еще далеко, однако фрагменты ткани печени человека уже получены с помощью метода выращивания на матрице из биоразлагаемых полимеров. И хотя успехи очевидны, замена таких жизненно важных органов, как сердце или печень, их выращенными аналогами - все-таки дело будущего, хотя, возможно, и не очень далекого.

Матрицы для органов

Нетканые губчатые матрицы для органов делают из биоразрушаемых полимеров молочной и гликолевой кислот, полилактона и многих других веществ. Большие перспективы и у гелеобразных матриц, в которые, кроме питательных веществ, можно вводить факторы роста и другие индукторы дифференцировки клеток в виде трехмерной мозаики, соответствующей структуре будущего органа. А когда этот орган сформируется, гель бесследно рассасывается. Для создания каркаса также используют полидиметилсилоксан, который можно заселить клетками любой ткани.

Базовая технология выращивания органов, или тканевая инженерия, заключается в использовании эмбриональных стволовых клеток для получения специализированных тканей

Следующий шаг - это выстилание внутренней поверхности полимера незрелыми клетками, которые затем образуют стенки кровеносных сосудов. Далее другие клетки желаемой ткани по мере размножения будут замещать биоразлагаемую матрицу. Перспективным считается использование донорского каркаса, определяющего форму и структуру органа. В экспериментах сердце крысы помещали в специальный раствор, с помощью которого удаляли клетки мышечной сердечной ткани, оставив другие ткани нетронутыми. Очищенный каркас засеивали новыми клетками сердечной мышцы и помещали в среду, имитирующую условия в организме. Всего через четыре дня клетки размножились настолько, что начались сокращения новой ткани, а через восемь дней реконструированное сердце уже могло качать кровь. С помощью этого же метода на донорском каркасе была выращена новая печень, которую затем пересадили в организм крысы.

Базовая технология выращивания органов

Пожалуй, нет ни одной биологической ткани, к попыткам синтезирования которой не приступила бы современная наука. Базовая технология выращивания органов, или тканевая инженерия, заключается в использовании эмбриональных стволовых клеток для получения специализированных тканей. Эти клетки затем помещают внутрь структуры соединительной межклеточной ткани, состоящей преимущественно из белка коллагена.

Матрицу из коллагена можно получить путем очистки от клеток донорской биологической ткани или создать ее искусственным путем из биоразрушаемых полимеров либо специальной керамики, если речь идет о костях. В матрицу помимо клеток вводят питательные вещества и факторы роста, после чего клетки формируют целый орган или его фрагмент. В биореакторе удалось вырастить мышечную ткань с готовой кровеносной системой.

Самыми сложными органами для биомедицины остаются сердце и почки, которые имеют сложную иннервацию и систему кровеносных сосудов

Эмбриональные стволовые клетки человека индуцировали к дифференцировке в миобласты, фибробласты и клетки эндотелия. Прорастая вдоль микротрубочек матрицы, эндотелиальные клетки сформировали русла капилляров, вошли в контакт с фибробластами и заставили их переродиться в гладкомышечную ткань. Фибробласты выделили фактор роста сосудистого эндотелия, который способствовал дальнейшему развитию кровеносных сосудов. При пересадке мышам и крысам такие мышцы приживались намного лучше, чем участки ткани, состоящие из одних мышечных волокон.

Органоиды

Используя трехмерные клеточные культуры, удалось создать простую, но вполне функциональную печень человека. В совместной культуре эндотелиальных и мезенхимальных клеток при достижении определенного соотношения начинается их самоорганизация и образуются трехмерные шарообразные структуры, представляющие собой зачаток печени. Через 48 ч после трансплантации этих фрагментов в организм мышей устанавливаются связи с кровеносными сосудами и внедренные части способны выполнять характерные для печени функции. Проведены успешные эксперименты по имплантации крысе легкого, выращенного на очищенной от клеток донорской матрице.

Воздействуя на сигнальные пути индуцированных плюрипотентных стволовых клеток, удалось получить органоиды легких человека, состоящие из эпителиальных и мезенхимальных компартментов со структурными особенностями, характерными для легочных тканей. Биоинженерные зародыши подчелюстных слюнных желез, сконструированные in vitro , после трансплантации способны развиваться в зрелую железу путем формирования гроздьевидных отростков с мышечным эпителием и иннервацией.

Разработаны 3D-органоиды глазного яблока и сетчатки глаза с фоторецепторными клетками: палочками и колбочками. Из недифференцированных эмбриональных клеток лягушки вырастили глазное яблоко и вживили его в глазную полость головастика. Через неделю после операции симптомы отторжения отсутствовали, и анализ показал, что новый глаз полностью интегрировался в нервную систему и способен передавать нервные импульсы.

А в 2000 г. опубликованы данные о создании глазных яблок, выращенных из недифференцированных эмбриональных клеток. Выращивание нервной ткани наиболее сложно из-за многообразия типов составляющих ее клеток и их сложной пространственной организации. Однако на сегодня существует успешный опыт выращивания аденогипофиза мыши из скопления стволовых клеток. Создана трехмерная культура органоидов клеток головного мозга, полученных из плюрипотентных стволовых клеток.

Напечатанные органы

Уже налажено серийное производство биопринтеров, которые слой за слоем печатают живые ткани и органы заданной трехмерной формы. Принтер способен с высокой скоростью наносить живые клетки на любую подходящую подложку, в качестве которой используют термообратимый гель. При температуре ниже 20 °С он представляет собой жидкость, а при нагреве выше 32 °С затвердевает. Причем печать осуществляется «из материала заказчика», то есть из растворов живых клеточных культур, выращенных из клеток пациента. Клетки, напыляемые принтером, через некоторое время сами срастаются. Тончайшие слои геля придают конструкции прочность, а затем гель можно легко удалить с помощью воды. Однако чтобы таким способом можно было сформировать функционирующий орган, содержащий клетки нескольких типов, необходимо преодолеть ряд сложностей. Механизм контроля, за счет которого делящиеся клетки формируют правильные структуры, еще не понятен до конца. Однако представляется, что несмотря на сложность этих задач, они все же решаемы и у нас есть все основания верить в стремительное развитие медицины нового типа.

Биобезопасность применения плюрипотентных клеток

От регенеративной медицины ждут очень многого и вместе с тем развитие этого направления порождает множество морально-этических, медицинских и нормативно-правовых вопросов. Очень важной проблемой является биобезопасность применения плюрипотентных стволовых клеток. Уже научились перепрограммировать клетки крови и кожи c помощью факторов транскрипции в индуцированные стволовые плюрипотентные клетки. Полученные культуры стволовых клеток пациента в дальнейшем могут развиваться в нейроны, ткани кожных покровов, клетки крови и печени. Следует помнить, что во взрослом здоровом организме плюрипотентных клеток нет, но они могут спонтанно возникать при саркоме и тератокарциноме. Соответственно, если ввести в организм плюрипотентные клетки или клетки с индуцированной плюрипотентностью, то они могут спровоцировать развитие злокачественных опухолей. Поэтому необходима полная уверенность в том, что в трансплантируемом пациенту биоматериале таких клеток не содержится. Сейчас разрабатываются технологии, позволяющие прямо получить клетки тканей определенного типа, минуя состояние плюрипотентности.

В XXI в. с развитием новых технологий медицина обязана перейти на качественно новый уровень, который позволит своевременно «отремонтировать» организм, пораженный тяжелой болезнью или возрастными изменениями. Хочется верить, что совсем скоро выращивать органы прямо в операционной из клеток пациента будет так же просто, как цветы в оранжереях. Надежду подкрепляет то, что технологии выращивания тканей уже работают в медицине и спасают жизни людей.

М.В.Плетников
перевод с английского Science, 1995,
Vol. 270, N 5234, pp. 230-232.

Создание искусственных органов и тканей оформилось в самостоятельную отрасль науки около десяти лет тому назад. Первые достижения этого направления - создание искусственной кожи и хрящевой ткани, образцы которых уже проходят первые клинические испытания в центрах трансплантации. Одно из последних достижений состоит в конструировании хрящевой ткани, способной к активной регенерации. Это действительно огромный успех, поскольку поврежденная суставная ткань не регенерирует в организме. В клиниках США ежегодно оперируют более 500 тыс. больных с повреждениями суставного хряща, но подобное хирургическое вмешательство лишь на короткое время облегчает боль и улучшает движения в суставе. Ученые из Гётеборгского университета в Швеции экстрагировали хондроциты (клетки хряща) из суставов 23 пациентов, вырастили культуру клеток, которая образовала хрящевую ткань, а затем имплантировали ее в поврежденный коленный сустав. Результат оказался превосходным: у 14 из 16 пациентов было отмечено практически полное замещение поврежденного хряща новой тканью в месте ее имплантации. Выращивание хрящевой ткани занимает, к сожалению, много времени - несколько недель, поэтому ученые пытаются разработать методики более быстрого получения искусственных тканей. Например, группа экспериментаторов из биотехнологической компании "Organogenesis " провела выращивание пленки искусственной кожи на матриксе из природного коллагена, что позволяет практически сразу использовать эту новую ткань в клинике.

При клиническом испытании нового кожного трансплантата было показано, что он улучшает (не менее чем на 60% по сравнению с обычными материалами) заживление венозных язв и кожных повреждений. Однако кожа и хрящ - ткани, состоящие из одного или двух типов клеток, и требования к структуре основы, предназначенной для их выращивания в искусственных условиях, относительно невысоки. Со многими же другими органами дело обстоит гораздо сложнее. В настоящее время предпринимаются попытки выращивания в лабораторных условиях печени. Но печень - сложно устроенный орган, состоящий из разных типов клеток, обеспечивающих очищение крови от токсинов, преобразование поступивших извне питательных веществ в усваиваемую организмом форму и выполняющих целый ряд других функций. Поэтому создание искусственной печени требует гораздо более сложной технологии: все эти разнообразные типы клеток должны быть размещены строго определенным образом, то есть основа, на которой они базируются, должна обладать высокой избирательностью.
С этой целью на такую синтетическую основу наносятся молекулы, обладающие свойствами клеточной адгезии и межклеточного узнавания - функциями установления специфических межклеточных связей в организме. История создания такой подложки для клеток печени может служить иллюстрацией преимуществ комбинированной технологии.

Например, исследователям из Массачусетского технологического института удалось создать подложку, на которой закрепляются только клетки-гепатоциты. Хорошо известно, что клетки этого типа выполняют в организме больше метаболических функций, чем любые другие. Одной из таких функций является удаление из кровеносного русла поврежденных белков. Гепатоциты узнают эти белки по определенным углеводным последовательностям, которые и "маркируют" их как брак. Исследователи синтезировали молекулы с такой последовательностью звеньев и "прикрепили" их к искусственному полиакриламидному полимеру, полагая, что эти "приманки" будут избирательно "привлекать" гепатоциты. Действительно, гепатоциты узнавали метки и задерживались на поверхности полимера. Однако впоследствии оказалось, что полиакриламид не может служить подходящим материалом для искусственной печени, поскольку вызывает сильную иммунную реакцию со стороны организма. Необходимо было искать какой-то другой полимер, который бы не отторгался организмом, но при этом и не адсорбировал бы различные белки, которые, осев на полимере, тут же начинали бы привлекать все типы клеток без разбора. В конце концов старания ученых увенчались определенным успехом. Им удалось синтезировать сетчатую подложку из полиэтилен-оксида (ПЭО), не вызывающего иммунной реакции и не адсорбирующего белки. ПЭО представляет собой молекулу звездчатой формы, лучи которой расходятся в разные стороны от плотного центрального ядра. Когда молекулы ПЭО связываются между собой, концы лучей каждой "звезды" свободно плавают в водном растворе. При этом они несут на себе реактивные гидроксильные группы, к которым и прикрепляют углеводные "приманки" для гепатоцитов.

Было показано, что при добавлении в такой раствор гепатоцитов крысы они тут же связываются с углеводами и закрепляются на сетчатой подложке, в то время как фибробласты, внесенные в раствор, на полимере не оседают. Таким образом, ученым посчастливилось разрешить одну из самых больших проблем в создании искусственных органов: сконструировать высокоспецифический клеточный акцептор. Следующим этапом стало формирование трехмерной структуры сетчатой подложки. Здоровая печень состоит из массы клеток, пронизанных сложной сетью кровеносных сосудов. Для нормальной работы печени различные типы клеток должны быть расположены по отношению друг к другу в определенном порядке. Разработав способ укладки полимера (полиактиновой кислоты) на тончайшую бумажную основу под управлением компьютера, что позволяет в дальнейшем конструировать уже трехмерную архитектуру органа, исследователи теперь бьются над проблемой соединения с трехмерной структурой нового полимера молекул ПЭО, несущих "приманки". В будущем они надеются присоединить к полимеру и метки другого типа, например антитела, привлекающие к себе клетки, образующие желчные протоки. Наконец, предполагается использование аминокислот - глютаминовой, аспарагиновой и аргинина - для формирования специфического эндотелиального слоя печени. Так постепенно, шаг за шагом, ученые надеются создать полноценную искусственную печень. Гибридные основы-подложки хорошо зарекомендовали себя и в экспериментах по "выращиванию" нервных волокон. В этом случае в качестве подложки оказался особенно эффективен тефлон - материал, совершенно безвредный для организма. Соединение тефлоновой сетки с молекулами ламинина посредством модифицированных ионизированным газом атомов никеля представляет собой, по мнению исследователей, весьма перспективную основу, на которой может происходить рост отростков нервных клеток. Ламинин в данном случае выполняет функцию регуляции и направления роста нервов. Следующим шагом, приближающим клиническое применение индуцированного роста предназначенных для трансплантации нервов, должно стать изготовление специальных направляющих трубочек, которые можно было бы размещать в организме вдоль поврежденных нервных волокон. Тефлон также давно используют в искусственных кровеносных сосудах. Однако до сих пор из него производят только широкие (более 6 мм в диаметре) сосуды, так как сосуды меньшего диаметра через 1-2 года после имплантации закупориваются тромбоцитами и гладкомышечными клетками. Этого не происходило бы, если бы структура стенок имплантированного сосуда была похожа на выстилающий эпителий настоящих вен и артерий.

Проблему можно решить путем нанесения на полимер естественных эпителиальных клеток, образующих гладкую выстилку внутренних стенок сосудов, к которой не прилипают тромбоциты и гладкомышечные клетки. Создание такого искусственного эпителия и является основной проблемой конструирования кровеносных сосудов. К слову сказать, аналогичное налипание клеток, и как следствие, закупоривание сосудов, происходит и в самом организме из-за атеросклеротического изменения эпителия. При решении этой задачи, как и при попытках вызвать направленный рост нервных волокон, ученые пользуются "услугами" белков межклеточной адгезии и внеклеточного матрикса: фибронектина и ламинина. Среди органов и тканей, которые в настоящее время интенсивно исследуются с целью их биотехнологического воссоздания, можно отметить также костную ткань, сухожилия, кишечник, сердечные клапаны, костный мозг и трахею. Помимо работ по созданию искусственных органов и тканей человеческого организма ученые продолжают разрабатывать и методы вживления в организм больных диабетом людей клеток, продуцирующих инсулин, а людям, страдающим болезнью Паркинсона, - нервных клеток, синтезирующих нейромедиатор дофамин, что позволит избавить пациентов от ежедневных утомительных инъекций.

- 87.07 Кб

Карагандинский Государственный Медицинский Университет

Кафедра медицинской биофизики и информатики

Тема: Искусственные органы.

Выполнила: Кан Лилия 142 ОМ

Проверил: Коршуков И.В.

Караганда 2012

  1. Введение.
  2. Искусственные легкие (оксигенаторы).
  3. Искусственная почка (гемодиализ).
  4. Искусственное сердце.
  5. Кардиостимуляторы.
  6. Биологические протезы. Искусственные суставы.
  7. Заключение.

Введение.

Идеи о замене больных органов здоровыми возникли у человека еще несколько веков назад. Но несовершенные методы хирургии и анестезиологии не позволяли осуществить задуманное. В современном мире трансплантация органов занимает достойное место в лечении терминальных стадий многих заболеваний. Были спасены тысячи человеческих жизней. Но проблемы возникли с другой стороны. Катастрофический дефицит донорских органов, иммунологическая несовместимость и тысячи людей в листах ожидания того или иного органа, которые так и не дождались своей операции.

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы - вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Ученые по всему миру все чаще задумывались над созданием искусственных органов, которые могли бы заменить настоящие по своим функциям, и в этом направлении были достигнуты определенные успехи. Нам известны искусственные почка, легкие, сердце, кожа, кости, суставы, сетчатка, кохлеарные импланты.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые выполняют функции оперируемых органов, позволяют на время приостановить их работу.

Искусственные легкие (оксигенаторы).

Оксигенатором называют газообменное одноразовое устройство, которое предназначается для удаления из крови углекислоты и насыщения ее кислородом. Оксигенатор используют при проведении кардиохирургических операций, или же с целью улучшить в организме больного кровообращение, если больной страдает от заболеваний легких или сердца, содержание кислорода в крови при которых сильно понижается.

Недостатками прямоточных пузырьковых оксигенаторов являются сильный поток кислорода и связанный с этим гемолиз, а также вспенивание и последующий переход в жидкое состояние всего объема крови, проходящего через оксигенатор. Кислород, поступающий в кровь из нижней части пузырькового оксигенатора противоточного типа, создает пенный столб (экран), навстречу которому из верхней части оксигенатора стекает венозная кровь. Этот принцип более экономичен и эффективен. Расход кислорода и количество крови существенно меньше, чем в прямоточных оксигенаторах. Из-за вспенивания небольшой части притекающей венозной крови меньше травмируются форменные элементы крови. Недостатком указанных оксигенаторов является сложность управления, обусловленная необходимостью постоянного наличия пенного столба. Оксигенаторами указанного типа снабжены различные модификации отечественных АИК.

Пленочные оксигенаторы.

Как свидетельствует название этих устройств, оксигенация происходит при контакте пленки крови, образовавшейся на какой-либо твердой поверхности, с кислородом. Различают стационарные и ротационные пленочные оксигенаторы. В стационарных оксигенаторах кровь стекает по неподвижным экранам, которые находятся в атмосфере кислорода. Примером служит оксигенатор Гиббона, с помощью которого была проведена первая успешная операция на сердце с искусственным кровообращением.Главными недостатками экранных оксигенаторов являются их дороговизна, плохая управляемость, громоздкость конструкции и необходимость большого количества донорской крови. Более эффективны ротационные оксигенаторы. К ним относятся популярные в прошлом дисковый оксигенатор Кея - Кросса и цилиндровый оксигенатор Крафорда - Сеннинга. Пленка крови, образующаяся на поверхности вращающихся дисков или цилиндров, контактирует с кислородом, подаваемым в оксигенатор. Производительность ротационных оксигенаторов в отличие от экранных может быть увеличена за счет повышения скорости вращения дисков (цилиндров). Рассмотренные пленочные и пузырьковые оксигенаторы многоразового пользования имеют исторический интерес. На смену им пришли оксигенаторы одноразового пользования в комплекте с теплообменником, артериальным и венозным резервуарами, специальной «антифомной» (силикон) секцией внутри оксигенатора, газовыми и жидкостными фильтрами, набором канюль и катетеров. Наибольшей популярностью пользуются оксигенаторы фирм «Bentley» (США), «Harvey» (США), «Shiley» (США), «Polystan» (Дания), «Gambro» (Швеция) и др. Эти оксигенаторы полностью удовлетворяют запросы современной кардиохирургии и кардиоанестезиологии. Но если необходима длительная (более 4 ч) искусственная оксигенация крови, то вредное действие прямого контакта крови с кислородом и углекислым газом становится небезразличным для организма. Антифизиологичность этого феномена проявляется изменением электрокинетических сил, нарушением нормальной конфигурации молекул белков и их денатурацией, агрегацией тромбоцитов, выбросом кининов и т.д. Во избежание этого при длительных перфузиях более целесообразно пользоваться мембранными оксигенаторами.

Искусственная почка (гемодиализ).

Почки - жизненно важный орган, без которого человек не может жить.
Резкое нарушение функций почек у человека в короткое время может привести к смерти. Потому что организм больного теряет способность очищаться естественным путем. Токсины и прочие вредные вещества не удаляются, а накапливаются в организме, что грозит общим отравлением, в организме происходят необратимые изменения и спасти больного уже нельзя.

Гемодиализ - это механическое очищение крови от отходов, солей и жидкостей, необходимое пациентам, почки которых недостаточно здоровы для выполнения этой работы.

Гемодиализ проводят с помощью аппарата искусственной почки. В основе его работы лежат принципы диализа, позволяющего удалить из плазмы крови вещества с небольшой молекулярной массой (электролиты, мочевину, креатинин, мочевую кислоту и др.), и частично ультрафильтрации, с помощью которой выводятся избыток воды и токсические вещества с более высокой молекулярной массой.

Среди многих моделей аппаратов искусственной почки выделяют два основных типа: аппараты с целлофановой мембраной, имеющей форму трубки диаметром 25-35 мм, и аппараты с пластинчатой целлофановой мембраной.

Наиболее широко за рубежом применяют двухкатушечную искусственную почку Колффа-Уочингера. Преимуществом этой модели является то, что катушки с намотанными целлофановыми шлангами поступают с завода в стерильном состоянии и при надобности могут быть немедленно использованы. Простота установки и обращения, значительная диализирующая поверхность создали большую популярность этой модели. Недостатки аппарата - большая емкость по крови и значительное сопротивление току крови из-за тугой обмотки двух диализирующих шлангов.Поэтому на входе в диализатор устанавливается насос.

Советская модель искусственной почки относится к типу диализаторов с пластинчатой целлофановой мембраной.
Большой клинический опыт советских и зарубежных клиницистов показывает высокую эффективность гемодиализа в лечении больных почечной недостаточностью.

Присоединяют аппарат к больному вено-венозным или артериовенозным способом. При необходимости многократного применения Г. пациенту имплантируют наружный артериовенозный шунт или накладывают подкожное соустье между артерией и веной. С помощью монитора осуществляют контроль и регуляцию химического состава, рН, давления и температуры диализирующего раствора, скорости его прохождения, давления крови в аппарате и др. Длительность гемодиализа 5-6 ч.

Схема советской модели искусственной почки:

1 - катетер; 2 - насос по крови; 3 - диализатор; 4 - измеритель производительности; 5 - воздухоуловитель; 6 - фильтр; 7 - катетер возврата крови больному; 8 - нагреватель; 9 - насос по диализирующей жидкости; 10 - бак для диализирующего раствора; 11 - ротаметр по кислороду; 12 - ротаметр по углекислоте; 13 - гидропривод перфузионного насоса.

Кровь от больного поступает по катетеру (1) при помощи насоса (2) в диализатор (3). Проходя между целлофановыми пластинками последнего (по каждой из его 11 секций), кровь больного через целлофановую пластинку соприкасается с протекающим навстречу диализирующим раствором. Состав его обычно стандартный и содержит все основные ионы крови (К·, Na·, Са··, Mg·, Cl·, НСO 3) и глюкозу в концентрациях, необходимых для коррекции электролитного состава крови больного. После диализатора кровь поступает в измеритель производительности (4), где улавливаются сгустки крови и воздух. Дальше кровь по катетеру возвращается в венозную систему больного. Диализирующий раствор при помощи автоматического нагревателя (8) доводят до t° 38° и насыщают карбогеном с таким расчетом, чтобы рН его составляла 7,4. При помощи насоса (9) диализирующий раствор подается в диализатор. Скорость кровотока в диализаторе обычно равна 250-300 мл/мин.

Применение искусственной почки по строгим показаниям с выполнением всех мер предосторожности и при тщательном наблюдении за больным во время диализа и после него практически безопасно и не грозит какими-либо осложнениями.

Искусственное сердце.

Искусственное сердце - технологическое устройство, предназначенное для поддержания достаточных для жизнедеятельности параметров гемодинамики.

На данный момент под искусственным сердцем понимается две группы технических устройств.

  • К первой относятся гемооксигенаторы, по-другому аппараты искусственного кровообращения. Они состоят из артериального насоса, перекачивающего кровь, и блока оксигенатора, который насыщает кровь кислородом. Данное оборудование активно используется в кардиохирургии, при проведении операций на сердце.
  • Ко второй относятся кардиопротезы, технические устройства, имплантируемые в организм человека, призванные заменить сердечную мышцу и повысить качество жизни больного. В настоящее время данные устройства являются лишь экспериментальными и проходят клинические испытания.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия. Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается - и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца. Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» это «Новакор». С ней можно целый год ждать операции. В кейсе-чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке наружный сервис компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома, с больным блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного - следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Кардиостимуляторы.

Кардиостимулятор - медицинский прибор, предназначенный для воздействия на ритм сердца. Основной задачей кардиостимулятора (водителя ритма) является поддержание или навязывание частоты сердечных сокращений пациенту, у которого сердце бьётся недостаточно часто, или имеется электрофизиологическое разобщение между предсердиями и желудочками (атриовентрикулярная блокада).

Показания к применению:

  • Аритмия сердца
  • Синдром слабости синусового узла
  • Атриовентрикулярная блокада

Кардиостимулятор представляет собой прибор в герметичном металлическом корпусе небольшого размера. В корпусе располагается батарея и микропроцессорный блок. Все современные стимуляторы воспринимают собственную электрическую активность (ритм) сердца, и если возникает пауза, либо иное нарушение ритма/проводимости в течение определенного времени, прибор начинает генерировать импульсы для стимуляции миокарда. В противном случае - при наличии адекватного собственного ритма - кардиостимулятор импульсы не генерирует. Эта функция называется «по требованию» или «on demand».

Описание работы

Идеи о замене больных органов здоровыми возникли у человека еще несколько веков назад. Но несовершенные методы хирургии и анестезиологии не позволяли осуществить задуманное. В современном мире трансплантация органов занимает достойное место в лечении терминальных стадий многих заболеваний. Были спасены тысячи человеческих жизней. Но проблемы возникли с другой стороны. Катастрофический дефицит донорских органов, иммунологическая несовместимость и тысячи людей в листах ожидания того или иного органа, которые так и не дождались своей операции.

Loading...Loading...