Длина волны. Красный цвет – нижняя граница видимого спектра. Цвет, управление цветом, цветовые расчеты и измерения

Свет и цвет. Волновая природа цвета

Все разнообразие окружающего мира мы видим благодаря свету и зрению. Свет излучают различные накаленные тела – солнце, нить элек­трической лампы, раскаленный ме­талл, газы, пламя керосиновой лам­пы, костер и т.д., которые называют первоисточниками света. Состав све­та, освещающего различные предме­ты, в значительной мере влияет на видимый человеком цвет этих пред­метов.

Под воздействием световых волн с колебаниями различной частоты у человека возникают различные све­товые и цветовые ощущения. Свет распространяется волнами опреде­ленной длины. Длина волны – это расстояние, на которое распростра­няется колебание за один период, т.е. за время, необходимое для одно­го полного колебания. Длина волны света обозначается греческой бук­вой X и измеряется в микрометрах (мкм).

Видимый спектр, т.е. диапазон волн, воспринимаемый человеком, ог­раничен волнами длиной приблизи­тельно 396 – 760 мкм. Некоторые ис­следователи считают, что глаз человека способен ощущать световые лучи в пределах 302 – 950 мкм, однако чувствительность глаза к крайним ви­димым лучам в сотни раз меньше, чем к световым лучам с длиной волны 396 – 760 мкм.

Прямой свет первоисточников (Солнца и т.д.) падает на окружающие предметы и объекты, при этом непро­зрачные предметы часть лучей погло­щают, а часть отражают. Цвет не­прозрачного предмета определяется светом, который от него отражается. У прозрачных предметов или имею­щих в своей структуре просветы или микропоры (например, ткани) часть лучей отражается, часть поглощается и часть пропускается. В результате все предметы и объекты сами становятся источником отраженного света, и до­вольно значительного, как, например, Луна, Земля, небесные тела и т.д.

Прямой свет определяет харак­терную окраску основного освещения объектов и предметов, их наиболее освещенные места, блики. Отраженный свет – второсте­пенный по силе источник света, определяет, во-первых, общую окраску теней и полутонов. Отраженный от предмета свет, в свою очередь, падает на со­седние предметы, вызывая рефлексы.

Цвет - это свойство тел вызывать определенное зрительное ощущение в соответствии со спектральным составом и интенсивностью отражаемого или испускаемого, или видимого излучения.

Цвета, входящие в солнечный спектр, и соответствующая им длина световых волн следующие (в ммк):

Фиолетовый 400 – 430 Синий 430 – 470
Голубой 470 – 500 Зеленый 500 – 535
Желтый 535 – 595 Оранжевый 595 – 620
Красный 620 – 700

Глаз человека воспринимает лучистую энергию как видимый цвет с длиной волн 400 – 760 нанометров.

Единицей измерения длины волны оптической области спектра излучений является нанометр (нм); 1 нм = 1 х 10 -3 мк (микрон) = 1 х 10 -6 мм (миллиметров).

Цветовой спектр

Ньютон впервые сформулировал мысль о сложном составе белого сол­нечного света. Если на пути солнеч­ного луча поставить стеклянную трехгранную призму, то вместо бело­го светового луча появится цветная полоса из различных цветов , называ­емая спектром .

Рисунок 3 – Разделение белого светового луча на цвета спектра

Рисунок 4 – Преломление светового луча через призму

Цвета в спектре рас­полагаются в определенном порядке: красный, оранжевый, желтый, зеле­ный, голубой, синий, фиолетовый. Каждый цвет постепенно, без резких границ, посредством множества про­межуточных цветов переходит в дру­гой цвет. Те же чистые, яркие, спект­ральные цвета можно увидеть в радуге. Цвета радуги - это спектр, который мы наблюдаем в естественных природных условиях (преломление и отражение солнечных лучей в дождевых каплях, рассеянных в воздухе).

Рисунок 5 – Расположение цветов в радуге

Первая попытка привести видимые цвета в систему принадлежала Исааку Ньютону. Цветовая система Ньютона – цветовой круг, составленный из семи секторов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового. Это расположение цветов –КОЖЗГСФ - легко запомнить по фразе – КАЖДЫЙ ОХОТНИК ЖЕЛАЕТ ЗНАТЬ, ГДЕ СИДИТ ФАЗАН.

Цвета, отличающиеся различной цветностью (красные, оранжевые, желтые, зеленые, голубые, синие, фио­летовые) называют хроматическими.

В спектре нет белых, серых цветов, а также черного цвета. Эти цвета, от­сутствующие в спектре, можно отли­чить лишь по светлоте. Группубелых, серых ичерных цветовназывают ахро­матическими (бесцветными).

Если же два крайних цвета спектра – красный и фиолетовый смешать между собой, то полу­чится новый промежуточный цвет пурпур­ный. Добавив пурпурный цвет к спектральным, можно спектр замкнуть в кольцо – цветовой круг, то есть расположить все спектральные и пурпурный цвет по окружности.

В результате мы имеем восемь цветов, считающихся в практике наиболее важны­ми: это желтый, оранжевый, красный, пур­пурный, фиолетовый, синий, голубой и зе­леный. Цветовые круги могут быть различны­ми по количеству содержащихся в них цве­тов, например: восемь, двенадцать, шестнадцать,

Рисунок 6 – Цветовой круг (8 цветов)

двад­цать четыре и т. д. (наш глаз в состоянии раз­личить более 150 оттенков цветов). Однако последовательность цветов в любом цвето­вом круге, как и в спектре, сохраняется одна и та же с той же последовательностью цве­тов, как в спектре.

Хроматические цвета отличаются друг от друга по трем признакам: цве­товому тону, насыщенности и светлоте.

> Видимый свет

Определение

Задача обучения

Термины

Основные пункты

Определение

Видимый свет – часть электромагнитного спектра, доступная для восприятия человеческому глазу (390-750 нм).

Задача обучения

Научиться отличать 6 диапазонов видимого спектра.

  • Оптическое окно – видимый участок в электромагнитном спектре, проходящая сквозь атмосферный слой.
  • Спектральный цвет – создается одной длиной волны света в видимом спектре или относительно узкой полосой длин волн.
  • Видимый свет – часть электромагнитного спектра (между ИК и УФ), доступная человеческому глазу.

Основные пункты

  • Видимый свет формируется из-за вибраций и вращений атомов и молекул, а также электронных транспортировок внутри них.
  • Цвета отвечают за конкретные чистые длины волн. Красный – наиболее низкие частоты и самые длинные волны, а фиолетовый – самые высокие частоты и кратчайшие длины.
  • Цвета, созданные в видимом свете узкой полосы длин волн, именуют чистыми спектральными цветами: фиолетовый (380-450 нм), синий (450-495 нм), зеленый (495-570 нм), желтый (570-590 нм), оранжевый (590-620 нм) и красный (620-750 нм).
  • Видимый свет прорывается сквозь оптическое стекло, поэтому атмосферный слой не оказывает значительного сопротивления.
  • Часть электромагнитного спектра, используемая в фотосинтезирующих организмах, именуется фотосинтетически активной областью (400-700 нм).

Узнайте определение и характеристику видимого света : длина волны, диапазон электромагнитного излучения, частота, диаграмма спектров цвета, восприятие цвета.

Видимый свет

Видимый свет – часть электромагнитного спектра, доступная человеческому глазу. Электромагнитное излучение этого диапазона просто именуют светом. Глаза реагируют на длины волн видимого света 390-750 нм. По частоте это соответствует полосе в 400-790 ТГц. Адаптированный глаз обычно достигает максимальной чувствительности в 555 нм (540 ТГц) при зеленой области оптического спектра. Но сам спектр не вмещает все цвета, улавливаемые глазами и мозгом. Например, такие красочные, как розовый и пурпурный, создаются при сочетании нескольких длин волн.

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличается, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Видимый свет формирует вибрации и вращения атомов и молекул, а также электронные транспортировки внутри них. Этими транспортировками пользуются приемники и детекторы.

Небольшая часть электромагнитного спектра вместе с видимым светом. Разделение между инфракрасным, видимым и ультрафиолетовым не выступает на 100% отличительным

На верхнем рисунке отображена часть спектра с цветами, которые отвечают за конкретные чистые длины волн. Красный – наиболее низкие частоты и самые длинные волны, а фиолетовый – наибольшие частоты и кратчайшие длины волн. Излучение солнечного черного тела достигает максимума в видимой части спектра, но наиболее интенсивно в красном, чем в фиолетовом, поэтому звезда кажется нам желтой.

Цвета, добытые светом узкой полосы длин волн, именуют чистыми спектральными. Не забывайте, что у каждого много оттенков, потому что спектр непрерывный. Любые снимки, предоставляющие данные с длин волн, отличаются от тех, что присутствуют в видимой части спектра.

Видимый свет и земная атмосфера

Видимый свет пробивается сквозь оптическое окно. Это «место» в электромагнитном спектре, пропускающее волны без сопротивления. В качестве примера можно вспомнить, что воздушный слой рассеивает голубой лучше красного, поэтому небеса кажутся нам синими.

Оптическое окно также именуют видимым, потому что оно перекрывает спектр, доступный человеку. Это не случайно. Наши предки развили видение, способное использовать огромное многообразие длин волн.

Благодаря наличию оптического окна мы можем наслаждаться относительно мягкими температурными условиями. Функция солнечной яркости достигает максимума в видимом диапазоне, который перемещается, не завися от оптического окна. Именно поэтому поверхность нагревается.

Фотосинтез

Эволюция сказалась не только на людях и животных, но и на растениях, которые приучились правильно реагировать на части электромагнитного спектра. Так, растительность трансформирует световую энергию в химическую. Фотосинтез использует газ и воду, создавая кислород. Это важный процесс для всей аэробной жизни на планете.

Эту часть спектра именуют фотосинтетически активной областью (400-700 нм), перекрывающейся с диапазоном человеческого зрения.

В природе не существует цветов как таковых. Каждый оттенок, который мы видим, задает та или иная длина волны. образуется под воздействием самых длинных волн и представляет собой одну из двух граней видимого спектра.

О природе цвета

Возникновение того или иного цвета можно объяснить благодаря законам физики. Все цвета и оттенки являются результатами обработки мозгом информации, поступающей через глаза в форме световых волн различной длины. При отсутствии волн люди видят а при единовременном воздействии всего спектра - белый.

Цвета предметов определяются способностью их поверхностей поглощать волны определенной длины и отталкивать все остальные. Также имеет значение освещенность: чем ярче свет, тем интенсивнее отражаются волны, и тем ярче выглядит объект.

Люди способны различать более ста тысяч цветов. Любимые многими алые, бордовые и вишневые оттенки образуются самыми длинными волнами. Однако чтобы человеческий глаз мог увидеть красный цвет, не должна превышать 700 нанометров. За этим порогом начинается невидимый для людей инфракрасный спектр. Противоположная граница, отделяющая фиолетовые оттенки от ультрафиолетового спектра, находится на уровне около 400 нм.

Цветовой спектр

Спектр цветов как некоторая их совокупность, распределенная в порядке возрастания длины волны, был открыт Ньютоном в ходе проведения его знаменитых экспериментов с призмой. Именно он выделил 7 явно различимых цветов, а среди них - 3 основных. Красный цвет относится и к различимым, и к основным. Все оттенки, которые различают люди - это видимая область обширного электромагнитного спектра. Таким образом, цвет - это электромагнитная волна определенной длины, не короче 400, но не длиннее 700 нм.

Ньютон заметил, что пучки света разных цветов имели разные степени преломления. Если выражаться более корректно, то стекло преломляло их по-разному. Максимальной скорости прохождения лучей через вещество и, как следствие, наименьшей преломляемости способствовала наибольшая длина волны. Красный цвет является видимым отображением наименее преломляемых лучей.

Волны, образующие красный цвет

Электромагнитная волна характеризуется такими параметрами, как длина, частота и Под длиной волны (λ) принято понимать наименьшее расстояние между ее точками, которые колеблются в одинаковых фазах. Основные единицы измерения длины волн:

  • микрон (1/1000000 метра);
  • миллимикрон, или нанометр (1/1000 микрона);
  • ангстрем (1/10 миллимикрона).

Максимально возможная длина волны красного цвета равна 780 ммк (7800 ангстрем) при прохождении через вакуум. Минимальная длина волны этого спектра - 625 ммк (6250 ангстрем).

Другой существенный показатель - частота колебаний. Она взаимосвязана с длиной, поэтому волна может быть задана любой из этих величин. Частота волн красного цвета находится в пределах от 400 до 480 Гц. Энергия фотонов при этом образует диапазон от 1,68 до 1,98 эВ.

Температура красного цвета

Оттенки, которые человек подсознательно воспринимает как теплые либо холодные, с научной точки зрения, как правило, имеют противоположный температурный режим. Цвета, ассоциируемые с солнечным светом - красный, оранжевый, желтый - принято рассматривать как теплые, а противоположные им - как холодные.

Однако теория излучения доказывает обратное: у красных оттенков намного ниже, чем у синих. На деле это легко подтвердить: горячие молодые звезды имеют а угасающие - красный; металл при раскаливании сначала становится красным, затем желтым, а после - белым.

Согласно закону Вина, существует обратная взаимосвязь между степенью нагрева волны и ее длиной. Чем сильнее нагревается объект, тем большая мощность приходится на излучения из области коротких волн, и наоборот. Остается лишь вспомнить, где в видимом спектре существует наибольшая длина волны: красный цвет занимает позицию, контрастную синим тонам, и является наименее теплым.

Оттенки красного

В зависимости от конкретного значения, которое имеет длина волны, красный цвет приобретает различные оттенки: алый, малиновый, бордовый, кирпичный, вишневый и т. д.

Оттенок характеризуется 4 параметрами. Это такие, как:

  1. Тон - место, которое цвет занимает в спектре среди 7 видимых цветов. Длина электромагнитной волны задает именно тон.
  2. Яркость - определяется силой излучения энергии определенного цветового тона. Предельное снижение яркости приводит к тому, что человек увидит черный цвет. При постепенном повышении яркости появится за ним - бордовый, после - алый, а при максимальном повышении энергии - ярко-красный.
  3. Светлость - характеризует близость оттенка к белому. Белый цвет - это результат смешивания волн различных спектров. При последовательном наращивании этого эффекта красный цвет превратится в малиновый, после - в розовый, затем - в светло-розовый и, наконец, в белый.
  4. Насыщенность - определяет удаленность цвета от серого. Серый цвет по своей природе - это три основных цвета, смешанные в разных количествах при понижении яркости излучения света до 50%.

Учитель физики г. Бахчисарай

Гапеенко Нина Александровна

Урок 2.78 по теме «Дисперсия света»

Цель: изучить понятия: волновая оптика, спектр, монохроматический свет, дисперсия; объяснять окраски предметов.

Метод: объяснительно-иллюстративный, исследование.

Ход урока:

Слайд 2-3.

На слайдах мы видим проявление законов отражения и законов преломления в цвете. Может ли геометрическая оптика ответить на вопрос: откуда появляются те или иные цвета и что такое цвет?

Нет. Для этого необходимо изучить строение световых волн. А эти вопросы рассматриваются в разделе «Волновая оптика».

Слайд 4.

(«Волновая оптика» и её основные вопросы)

Слайд 5.

Сегодня на уроке мы рассмотрим свойство «дисперсия».

Запишите тему урока:

    Объяснение нового материала:

Обратимся к экспериментальным данным. Ещё в 1605г . английский учёный Томас Харриот , изучая преломление света в жидкостях, обнаружил, что показатель преломления одного и того же вещества для красных лучей один, а для зелёных лучей другой. Это означает, что скорость световых волн разного цвета в веществе различна.

В настоящее время известно, что цвет , видимый глазом, определяется частотой световой волны. Поэтому открытие Харриота можно рассматривать как обнаружение зависимости показателя преломления вещества от частоты света.

Сам Харриот о своём открытии умолчал, и о его исследовании узнали значительно позже. В 1611г. Аналогичное явление, только не в жидкостях, а в стекле, обнаружил итальянский учёный Марк Антоний Доминис. И хотя его результаты были опубликованы, широкого распространения они не получили, а сам Доминис через 13 лет умер в тюрьме инквизиции.

В 1648г. дисперсия света была переоткрыта чешским учёным Я.М.Марци . Однако и на этот раз никто не обратил на это внимания.

И лишь когда соответствующие опыты были проведены Исааком Ньютоном в 1666г. , мир наконец узнал о новом явлении.

В начале 1666г. Ньютон был занят шлифовкой оптических стёкол несферической формы и решил испытать с помощью треугольной стеклянной призмы прославленное явление цветов.

Слайд 6-8.

«Сначала вид ярких и живых красок, получавшихся при этом, приятно развлёк меня. – вспоминал впоследствии Ньютон. – Но через некоторое время, заставив себя присмотреться к ним более внимательно, я был удивлён их продолговатой формой…»

Наблюдаемая картина получила название призматического или дисперсионного спектра.

До Ньютона белый (солнечный) свет считался простым, а различные цвета – его изменениями, появляющимися в результате взаимодействия света с «темнотой» или каким-либо веществом. Ньютон же, по словам современников, высказал «странную и необычную» гипотезу: «Мы должны различать два рода цветов: одни первоначальные и простые, другие же сложённые из них». Некоторые из простых лучей, по Ньютону, «способны производить красный цвет и никакого другого, другие – жёлтый и никакого другого и т.д.

Свои окончательные выводы Ньютон сформулировал в виде нескольких теорем. Первые из них гласят:

«Теорема I . Лучи, отличающиеся по цвету, отличаются и по степени преломляемости»

«Теорема II . Солнечный свет состоит из лучей различной преломляемости»

Итак, белый свет, по Ньютону, не является простым. Он имеет сложный состав и может быть разложен в спектр с помощью стеклянной призмы.

Рецензию на работу Ньютона было поручено сделать Роберту Гуку. Просидев над отзывам несколько часов подряд, Гук в своей рецензии выдвинул столь сильное возражение против ньютоновской теории, что Ньютону для обдумывания своего ответа потребовалось полгода. (По мнению Гука, утверждение о том, что в белом свете содержатся лучи всех цветов, равносильно утверждению о том, что в воздухе, заключённом в органных мехах, содержатся сразу все звуковые тона. Иными словами, это то же самое, что говорить о том, что шум есть совокупность правильных музыкальных звуков.)

В своём ответе на рецензию Гука Ньютон ушёл от рассматриваемой проблемы и сосредоточил внимание на слабых местах теории самого Гука.

Однако вслед за возражениями Гука последовала критика со стороны Гюйгенса. «Если бы то, что лучи света в их первоначальном состоянии были некоторые красными, некоторые синими и так далее, было правдой, - писал он, - то было бы очень трудно объяснить на механических принципах, в чём же состоит это различие цветов».

Гюйгенс оказался очень прозорлив – объяснение этого излучения появилось лишь в XIX в., когда было установлено, что излучения различных цветов отличаются частотой колебаний.

Слайд 9.

В самом деле, если с помощью второй призмы, перевернутой на 180 градусов относительно первой, собрать все пучки спектра , то опять получится белый цвет.

Слайд 10-12

Электромагнитное излучение одной определённой и строго постоянной частоты называется монохроматическим.

(На практике содержит узкий участок спектра)

-Дайте определение понятий «видимое излучение», «спектр», «цвет», «дисперсия».

Цвет – свойство тела вызывать определённое зрительное ощущение в соответствии со спектральным составом отражаемого или испускаемого излучения.

Спектр – совокупность гармонических колебаний (или волн), создаваемых каким-либо источником.

Видимое излучение – электромагнитное излучение с длиной волны от 380 до 780 нм.

Дисперсия – это разложение белого света на семь цветов.

Слайд 13.

Вывод:

    Призма не изменяет свет, а лишь раскладывает его на составные части.

    Белый свет состоит из цветных лучей.

    Фиолетовые лучи преломляются сильнее красных.

Почему?

Классическая электромагнитная теория дисперсии была создана в конце XIX в Х.А.Лоренцом. Согласно электромагнитной теории дисперсия света является результатом взаимодействия световой волны с молекулами вещества. Когда световая волна проникает в вещество, под действием электрического поля этой волны электроны молекул начинают совершать вынужденные колебания. Частота этих колебаний совпадает с частотой волны, а амплитуда зависит от соотношения между данной частотой и собственной частотой колебаний электрона. При разной частоте света амплитуда вынужденных колебаний электронов, а также степень поляризации вещества также различны. Различной при этом оказывается и диэлектрическая проницаемость вещества . Но скорость света
, а показатель преломления

Поэтому если зависит от частоты света, то зависимостью от частоты будут обладать и с .

Скорость света в вакууме равна с=3·10 8 м/с. Но свет бывает разным: жёлтым, красным, зелёным и т.д. В вакууме лучи всех цветов распространяются с одной и той же скоростью. Заключение о том, что и в веществе лучи разного цвета распространяются с разной скоростью докажем на практике.

Обратим внимание на формулу:
.

Следовательно,
(опираемся на формулу из лабораторной работы по определению показателя преломления стекла).

Слайд 14.

Вывод :

Красный свет, который меньше преломляется, имеет наибольшую скорость, а фиолетовый – наименьшую, поэтому призма и раскладывает свет.

Почему?

Рассуждения выносятся на доску:

Значит показатель преломления зависит от длины волны (от частоты).

Слайд 15.

Вывод: Показатель преломления зависит от длины волны электромагнитного излучения. Зависимость показателя преломления света от его длины волны называется дисперсией.

Определение: Зависимость скорости света в веществе (или показателя преломления) от частоты волны (или цвета) называется дисперсией света.

Слайд 16

Первичная проверка понимания:

    Что называют дисперсией света?

    Какой свет называют монохроматическим?

    Какой свет будет распространяться в веществе призмы (из стекла) с большей скоростью?

    Что произойдет при соединении световых лучей спектра?

    Чем объяснить белый цвет снега, черный цвет сажи, зеленый цвет листьев, красный цвет флага?

От чего зависит цветность световых волн? От частоты (только частота не изменяется при переходе из одной прозрачной среды в другую и цвет тоже не изменяется)

Объяснение цветности:

Особенно значительной становится амплитуда колебаний элект­ ронов в веществе при v v 0 . В этом случае наблюдается резонансное поглощение энергии и излучения соответствующих частот из падаю­ щего света «выпадают» (поглощаются).

У молекул бесцветного прозрачного вещества, например стекла, наиболее существенные резонансные частоты лежат в ультрафиоле­товой области. Поэтому обычное стекло хорошо пропускает видимый свет и поглощает ультрафиолетовый.

У цветных стекол резонансы имеются и в видимом диапазоне частот. Из-за этого часть проходящего света поглощается и остается лишь тот, который и придает цвет стеклу. Например, глядя на лампу накаливания через синий светофильтр, мы увидим ее синей потому, что синий светофильтр из всей совокупности излучений лампы про­пускает только синие, фиолетовые и голубые лучи, а остальные по­глощает.

Цвет непрозрачных предметов определяется тем светом, который они диффузно (рассеянно) отражают. Так, например, предмет, по­глощающий все лучи, кроме зеленых, отражая последние, приобре­тает зеленый цвет. Если же поверхность какого-то предмета оди­наково хорошо отражает лучи всех цветов спектра, то она будет казаться белой. Белые поверхности характеризуются значительным коэффициентом отражения. Причем, чем больший коэффициент от­ражения имеет белая поверхность, тем более светлой она кажется. Очень светлым поэтому выглядит белый порошок оксида магния (ко­эффициент отражения 96%). Свежевыпавший снег отражает 85% падающего светового потока, белая бумага - 75%.

«Черных лучей» в природе не существует. Предмет нам кажется черным в том случае, когда он поглощает почти весь падающий на него свет, одинаково плохо отражая лучи всех цветов. Например, коэффициент отражения черного бархата составляет всего лишь 0,3%.

Вообще все цвета, встречающиеся в природе, делят на ахрома­ тические и хроматические. К ахроматическим цветам относятся белый, черный и серый цвета.

К хроматическим относятся спектральные цвета (от красного до фиолетового), пурпурные (малиновый, вишнёвый и сиреневый) и все остальные (коричневый, салатный и т.д.), получившиеся в результате смешения различных цветов между собой. Пурпурные цвета возникают при смешении в разной пропорции красных и фиолетовых или синих цветов.

Красный, зеленый и синий цвета являются взаимно независи­ мыми. Это означает, что каждый из них не может быть получен в результате смешения двух других. Направив на белый экран три пучка света, пропущенные соответственно через красный, зеленый и синий светофильтры, в месте их пересечения можно получить белый цвет. Правда, он получится лишь при одном совершенно опреде­ленном соотношении яркостей складывающихся световых пучков. Из­меняя это соотношение, в результате смешения красного, зеленого и синего цветов можно получить практически любой другой хрома­тический цвет.

Слайд 17

Объяснение на основе свойства дисперсии света природного явления «Радуга»

    Закрепление:

Слайд 18

Закрепление полученных на уроке знаний:

Тест по теме «Дисперсия света»

Вариант 1

    Сравните скорость распространения красного и фиолетового излучений в вакууме.

А. υ к › υ ф

Б. υ к = υ ф

В. υ к ‹ υ ф

    Как изменится частота зеленого излучения при переходе света из воздуха в воду?

А. Уменьшается

Б. Не изменяется

В.Увеличивается

    Показатель преломления воды при температуре 20 0 С для различных монохроматических лучей видимого излучения находится в интервале от n 1 =1,3308 до n 2 =1,3428. Каков из этих показателей является показателем преломления фиолетовых лучей?

А. n 2

Б. n 1

В.n 1 и n 2

    Почему для транспорта световым сигналом опасности является красный свет?

А. Ассоциируется с цветом крови

Б. Бросается в глаза

В.Имеет самый малый показатель преломления

Г. Менее всего рассеивается в воздухе и тумане.

    На белой бумаге написан текст красными буквами. Через стекло какого цвета буквы будут казаться черными?

А.Белого

Б.Красного

В.Зеленого

Вариант 2

    Сравните скорость распространения красного и фиолетового излучений в стекле.

А. υ к › υ ф

Б. υ к = υ ф

В. υ к ‹ υ ф

    Как изменится длина волны красного излучения при переходе света из воздуха в воду?

А. Уменьшается

Б. Не изменяется

В.Увеличивается

    От чего зависит цветность световых волн?

А. От их частоты

Б. От скорости их распространения

В.От длины волны

    Почему рабочие на стройке носят каски оранжевого цвета?

А. Оранжевый цвет хорошо заметен на расстоянии

Б. Мало изменяется во время непогоды

В. Менее всего рассеивается в воздухе и тумане.

Г. Согласно требованиям безопасности труда.

    В бутылку из зеленого стекла налиты красные чернила. Какого цвета кажутся чернила?

А.Черного

Б.Красного

В.Зеленого

Слайд 19

    Самопроверка

    Самоанализ (рефлексия)

    Домашнее задание:

Слайд 20.

Домашнее задание:

    Параграф 53 (учебник под редакцией проф. Н.А. Парфентьевой)

    Рымкевич №1081,1083,1084

    Творческое задание: «Применение дисперсии света.»

Список используемой литературы:

    Рымкевич А.П., « Задачник» для 10 – 11 классов, Москва, издательство «Дрофа», 2006

    Громов С.В., «Физика – 11», Москва, издательство «Просвещение», 2009

    Мякишев Г.Я., «Физика – 11», Москва, издательство «Просвещение», 2014

    Пинский А.А., «Физика – 11», Москва, издательство «Просвещение», 2009

Loading...Loading...